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Abstract  

Specialty leafy greens are excellent sources of antioxidants, vitamins, and 

minerals. Many of these metabolites are influenced by microclimate environmental 

conditions and genotype. The objective of this thesis was to measure the impacts of 

abiotic factors on plant growth and development along with nutritional content of 

specialty leafy greens in controlled environments. Chapter one looks at changes in 

biomass and nutritional content of different microgreen cultivars grown in a greenhouse 

over four growing seasons. Chapter two looks at the influence of light-emitting diode 

(LED) treatments on the growth and nutritional content of hydroponically grown kale. 

The morphology and nutritional content of hydroponically grown kale plants were 

significantly impacted by LED treatment. LED treatments with higher proportion of blue 

light had significantly shorter plants and greater fresh mass (FM) as compared to all 

other LED treatments. Environmental and genetic factors influenced the growth and 

development, as well as impacted the nutritional content of the different microgreen 

cultivars. Brassica microgreens had the highest FM and shortest production times 

throughout all seasons, as compared to the herb and lettuce microgreens. Whereas, the 

herb microgreens had the highest concentrations of shoot tissue carotenoids and 

minerals, as compared to brassica and lettuce microgreens.  Results from this thesis 

provides valuable production data for producers who grow specialty leafy greens in 

controlled environments.  Nutritional data among microgreen species may contribute to 

consumer knowledge for healthy eating choices.   
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1.1 Introduction 

The environment plays a critical role in determining plant health and 

development. Plants use secondary compounds to respond to stress within their local 

environment (Murthy et al., 2014; Ramakrishna and Ravishankar, 2011). Secondary 

metabolites act internally to protect plants against ultraviolet (UV) light, extreme 

temperatures, drought, herbivory, and insect or pathogen injury and often accumulate 

within shoot tissues (Chamberlain et al., 2000; Croteau et al., 2000; Hectors et al., 2014). 

Therefore, leafy green specialty crops can be excellent sources of secondary 

metabolites. Carotenoids, a class of secondary metabolites, protect against UV 

photodamage and can be altered through changes in light intensity and quality 

(Schreiner et al., 2012).  Secondary metabolites and other phytonutrients benefit plant 

as well as human health. Strong antioxidants like anthocyanins, carotenoids, and 

flavonoids aid in reducing the risk of developing chronic diseases like cancer, heart 

disease, diabetes and cataracts (Liu, 2013).  

While secondary metabolites protect against environmental stress, light is a 

crucial factor that promotes plant growth and development. Light is detected via 

photoreceptors which monitor intensity, quality, and duration to signal developmental 

changes or the accumulation of protective secondary metabolites to stop the over 

production of damaging reactive oxygen species (ROS) and photoinhibition (Kim et al., 

2005; Ouzounis et al., 2015; Tyystjärvi, 2013; Figure 1.1). Therefore, the purposeful 

manipulation of abiotic environmental factors like light, water, and temperature to elicit 
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secondary metabolite accumulation can enhance phytonutrient levels in vegetables, 

specifically leafy greens, which directly benefit consumer health (Liu, 2013; Ramakrishna 

and Ravishankar, 2011). This literature review will focus on the significance of secondary 

metabolites to plant and human health, as well as environmental impacts on the 

biosynthesis of secondary metabolites. It will also discuss light and plant development 

to give a greater understanding of the interactions between photosynthetic and 

photoprotective mechanisms.  

1. 2 Ecological Significance and Biosynthesis of Secondary Metabolites 

 Primary metabolites like carbohydrates, amino acids, and lipids are universal 

organic molecules that can be found across all plant families (Taiz and Zeiger, 1998; 

Rhodes, 1994). Primary metabolites are essential for plant growth in that they are 

crucial for cell wall and membrane structure, cellular respiration, cell growth and 

expansion, and form the basic building blocks for the synthesis of polymers and other 

organic compounds (Olivoto et al., 2017; Taiz and Zeiger, 1998). The highly branched 

biosynthetic pathways and cycles that lead to the production of primary metabolites 

often link to or initiate the pathways that produce secondary metabolites (Herms et al, 

1992; Matsuki, 1996; Rhodes, 1994). Secondary metabolites are specialized organic 

compounds, which allow plants to interact with each other as well as other organisms 

and respond to changes within their local environment (Murthy et al., 2014; Pickett and 

Khan, 2016; Zhao et al., 2005).   
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The concentrations of both primary and secondary plant metabolites are 

regulated through environmental and genetic factors (Hounsome et al., 2008).  Unlike 

primary metabolites, secondary metabolites differ among different plant families and 

are not directly involved in plant growth although they may be necessary during select 

developmental stages (Speed et al., 2015; Pichersky and Gang, 2000). However, 

secondary metabolites facilitate important ecological interactions and play diverse roles 

in protecting plant health against damaging external stimuli (Croteau et al., 2000; Mazid 

et al., 2011).  

The amount of damaging reactive oxygen species (ROS) is primarily controlled by 

jasmonic acid (JA) and ethylene (ET) interactions, and these important compounds 

activate the biosynthesis and accumulation of secondary metabolites (Jacobo-Velázquez 

et al., 2015). Plants produce secondary metabolites to attract pollinators and beneficial 

insects and deter herbivores (Nishida, 2014; Schreiner et al., 2012). Highly specific 

herbivore adaptions to secondary metabolites further support the idea that they do 

have a significant impact on herbivore fitness and function as effective defense tools 

(Agrawal and Weber, 2015). They also shield sensitive tissues from harsh environmental 

conditions (drought, chilling, and UV light) and protect plants from pathogen or insect 

attack (Chamberlain et al., 2000; Croteau et al., 2000; Hectors et al., 2014). Additionally, 

they can act as allelochemicals, which negatively impact the germination and growth of 

sensitive species (Mahdavikia and Saharkhiz, 2016; Sharma et al., 2014). It is this 

evolutionary arms race towards reinforcing chemical defenses to protect overall plant 
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health that has led to the current and continued diversification of secondary 

metabolites in plants (Speed et al., 2015).  

Terpenes, phenolic compounds, alkaloids, and sulfur (S) containing compounds, 

such as glucosinolates, are independent secondary metabolite groups based on their 

biosynthetic origins and activity (Croteau et al., 2000; Murthy et al., 2014). Terpenes are 

derived from the precursor isopentenyl diphosphate (IPP) and synthesized in two 

pathways (McGarvey and Croteau, 1995; Webb et al., 2014). Monoterpenes, diterpenes, 

and tetraterpenes are synthesized in the chloroplast via the methylerythritol phosphate 

(MEP) pathway, while sesquiterpenes and triterpenes are produced in the mevalonic 

acid (MVA) pathway in the cytosol (Webb et al., 2014).  Alkaloids and glucosinolates are 

primarily derived from amino acids (Croteau et al., 2000; Liu et al., 2016). Phenolic 

compounds are derived from either the shikimic acid pathway or the acetate-malonate 

pathway (Croteau et al., 2000). The biosynthesis of secondary metabolites is 

predominantly constrained to specific plant tissues and occurs at pre-determined 

developmental stages (Pichersky and Gang, 2000). Secondary metabolite concentrations 

are naturally low in plants, but can fluctuate due to seasonal changes in biotic and 

abiotic factors, geographical differences in natural resources, and genetic variations 

(Ramakrishna and Ravishankar, 2011; Sampaio et al., 2016). To invoke an increase in 

secondary metabolite biosynthesis and accumulation, plants can be purposefully 

exposed to environmental stresses like UV irradiation, pathogen attack and wounding, 
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changes in light intensity or quality, and extreme temperatures (Edreva et al., 2008; 

Kopsell and Sams, 2013; Ramakrishna and Ravishankar, 2011).  

1. 3 The Human Health Benefits of Phytonutrients 

 As the primary site for photosynthetic reactions, leaves contain a myriad of 

primary and secondary metabolites which are beneficial to human health (Drewnowski 

and Gomez-Carneros, 2000; Osorio et al., 2014). Leaves also tend to be the most 

nutritious plant part since they contain dietary fiber, folate, vitamin C, Fe, Zn, Ca, and 

Mg, in addition to a host of secondary metabolites (Pennington and Fisher, 2009). 

Specialty leafy vegetable crops have edible, tender foliage and can include crops like 

lettuce (Lactuca sativa), cabbage (Brassica oleracea var. capitata), collard greens (B. 

oleracea), kale (B. oleracea var. sabellica), Swiss chard (Beta vulgaris subsp. vulgaris), 

microgreens, and various herbs (Hochmuth and Cantliffe, 2015; Lintas, 1992).  Specialty 

greens and herbs have formed a high-value market niche after gaining considerable 

attention from restaurant chefs as well as ethnic and local markets for their interesting 

flavors, textures, and colors (Hochmuth and Cantliffe, 2015). These distinctive qualities 

can be attributed to the unique phytochemical profile of the crop (Kader, 2008).   

 Secondary metabolites, together with primary metabolites, are responsible for 

imparting the characteristic flavors, aromas, and colors of fruits and vegetables that 

consumers and herbivores recognize (Baenas et al., 2014; Pavarini et al., 2012; Figure 

1.2). Secondary metabolites also provide health benefits to consumers. For example, 

carotenoids are lipid-soluble orange, yellow, and red pigments in fruits and vegetables 
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which act as antioxidants and are precursors for provitamin A in the human diet 

(Hounsome et al., 2008). Secondary metabolites that have been identified in leafy green 

vegetables include anthocyanins, carotenoids, alkaloids, glucosinolates, phenolic acids, 

and flavonoids (Cavaiuolo and Ferrante, 2014; Charron et al., 2008; Khanam et al., 2012; 

Kopsell and Sams, 2013; Hounsome et al., 2008; Slavin and Lloyd, 2012).  The secondary 

metabolites and other phytonutrients gained consumed in leafy vegetables are linked to 

the prevention of common diseases like cataracts, cardiovascular and heart disease, 

stroke, cancer, and diabetes (Liu, 2013). Disease prevention through the natural 

enhancement of phytonutrients within vegetables is a viable approach to improve 

consumer health since enhanced consumption of phytonutrients could be accomplished 

within an everyday diet (Drewnowski and Gomez-Carneros, 2000; Liu, 2013). 

1. 4 The Importance of Light in Plant Development 

Light is the primary source for energy in plants and drives photosynthetic 

reactions to create different metabolites that are important for plant growth and 

development (Gates et al., 1965; Taiz and Zeiger, 1998). Photosynthesis occurs in two 

phases; light energy is first converted into adenosine triphosphate (ATP), nicotinamide 

adenine dinucleotide phosphate (NADPH), and oxygen is released during the light 

dependent reactions (Ashraf and Harris, 2013). Then in the light-independent reactions, 

carbon is fixed into simple carbohydrates using the energy molecules ATP and NADPH 

created in the light reactions (Ashraf and Harris, 2013). Light intensity, quality, and 

duration are the keys factors in eliciting chemical reactions as well as controlling 
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metabolic pathways and developmental changes in plants (Nemhauser and Chory, 2002; 

Darko et al., 2014). Plant morphology, leaf shape and anatomy, photosynthetic rate, and 

phytochemical composition can be manipulated through changes in the light 

environment (Kim et al., 2005; Lefsrud et al., 2008; Li and Kubota, 2009).  

Upon exposure to light, plants undergo a series of photoinduced reactions and 

anatomical changes following a highly regulated developmental program called 

photomorphogenesis (Eckardt, 2001). Chlorophyll absorbs within the visible spectrum 

(400 nm to 700 nm) with peak absorbance in the blue and red regions (430-450 and 

640-660 nm), while secondary pigments like carotenoids have peak absorption in the 

blue region (380-550 nm), aiding in the total amount of light harvested and protecting 

photocenters from UV damage (Carvalho et al., 2011).  Plants can use a variety of tools 

to perceive and monitor light quality and quantity like photoreceptors, the redox state 

of the plastoquinone pool located in the thylakoid membranes in chloroplasts, and to a 

lesser degree photosynthate concentrations (Kim et al., 2005; Yano and Terashima, 

2001; Figure 1.3). Photoreceptors are specialized photomorphogenic pigment-proteins 

that contain chromophores which serve as the main site for light absorption (Darko et 

al., 2014; Mӧglich et al., 2010). The chromophore is the region where photoinduced 

chemical reactions occur, converting light energy into biochemical signals such as 

protein-protein interactions or enzyme activation to manipulate biosynthetic pathways 

(Kong and Okajima, 2016).  
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Currently, five photosensory systems have been identified and they monitor 

different wavelengths of light; those include phytochromes (phys), UV Resistance locus 

8 (UVR8), cryptochromes (crys), phototropins (phots), and proteins in the Zeitlupe 

family which include Zeitlupe (ZTL), F-Box-1 (FKF1), and LOV Kelch Protein 2 (LKP2) 

(Christie et al., 2014; Kong and Okijima, 2016). Photoreceptors have different domains 

to independently bind tetrapyrrole and flavins as their chromophores: LOV (light, 

oxygen, or voltage) of phots, GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, 

and FhlA) of phys, and PHR (photolyase homologous region) of crys (Briggs and Olney 

2001; Christie et al., 2014; Kong and Okajima, 2016). UVR8 utilizes particular tryptophan 

residues for UVB absorption rather than a chromophore (Wit et al., 2016). 

Crys and phys work in tandem to broaden the action spectrum of photosynthetic 

pigments to better coordinate photosynthetic output and development based on light 

conditions (Lin, 2002). Phys absorb red (Pr) (600–700 nm) and far-red (Pfr) (700–750 nm) 

wavelengths, while crys and phots are the two main photoreceptors that absorb blue 

light (390-500 nm) (Mӧglich et al., 2010).  Phytochrome is a photoreversible light 

sensing pigment that converts between active (Pfr) and inactive (Pr) forms to induce 

seed germination, shade avoidance responses, and flowering (Briggs and Olney 2001; 

Wit et al., 2016).  Phototropins are aptly named since they are involved in 

phototropisms as well as stomatal opening and chloroplastic movement in response to 

changing light environments and increased kinase activity (Kharshiing and Sinha 2015; 

Wit et al., 2016). Cryptochromes have two separate peak absorption areas in the blue 
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and UV-A regions respectively (Carvalho et al., 2011). They are involved in regulating the 

circadian clock, flowering or reproduction, and photomorphogenesis (Wit et al., 2016).  

Zeitlupe group members are LOV domain, blue-light sensing proteins involved in 

the regulation of circadian rhythms and photoperiodic flowering (Banerjee and 

Batschauer, 2005; Kevei et al., 2006; Kong and Okijima, 2016; Suetsugu and Wada, 2013; 

Wit et al, 2016). UVR8 regulates plant developmental and protective responses to UV 

and absorbs light in the UV B region (280–315 nm) (Christie et al., 2014). In general, 

photomorphogenic responses can be induced through select photoreceptors, while 

others may be induced through several different light signaling pathways or receptors 

working antagonistically or cooperatively (Wit et al., 2016). 

Recently, molecular mechanisms have linked light to hormonal responses in 

plants (Arsovski et al, 2012). Light induced photomorphogenesis moderates several 

hormonal pathways that produce gibberellins, abscisic acid, auxin, brassinosteroids, 

cytokinins, and ethylene (Yu et al., 2013). It has been recognized that blue light signaling 

via the Cryptochrome Circadian Clock 1 protein (cry1) changes the expression of Auxin 

Response Factor (ARF) genes to directly act on modifying the expression of auxin 

(Arsovski et al., 2012). The Constitutive photomorphogenesis 1 with the Long Hypocotyl 

5 (Cop1-HY5 complex) and the phytochrome interacting factors (PIFs) pathways are the 

main light signaling pathways downstream from photoreceptors that connect light 

signaling and hormonal responses (Lau and Deng, 2010; Yu et al., 2013). HY5 competes 

with PIFs for the same binding sites and works with COP1 to suppress 
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photomorphogenesis in darkness (Ang et al., 1998; Delker et al., 2014; McNellis et al., 

1994). Light encourages the buildup of HY5 proteins to promote photomorphogenesis 

by limiting the accumulation of COP1 in the nucleus (Yu et al., 2013). Additionally, light 

triggers the rapid degradation of PIFs and successively increases the biosynthesis of 

photosynthetic pigments (Liu et al., 2013). PIFs are able to act as repressors or 

promoters for the synthesis of photosynthetic pigments and chloroplast development 

(Liu et al., 2013). The effects of the light regulated control of hormones and 

photomorphogenesis is apparent in the dramatic changes that occur to seeds and 

seedlings during early growth (Arsovski et al., 2012; Lau and Deng, 2010).   

1. 5 Light Stress, Photoinhibition and Its Influence on Plant Growth  

Light-harvesting systems, composed mainly of chlorophylls and carotenoids, 

capture radiant energy and transfer it to the reaction centers of photosystem I (PSI) and 

photosystem II (PSII) within the thylakoid membrane (Yamori, 2016; Figure 1.4).  

Photoreceptors and photosynthetic machinery within leaves often have the difficult task 

of harmonizing incoming light conditions with the requirements for metabolism (Kim et 

al., 2005; Mohr, 1994). The amount of light considered excessive for the photosynthetic 

apparatus of a leaf depends on compounding environmental conditions like drought or 

high temperature, the ability of photoprotective systems to work efficiently, irradiance 

level, and genetic influences like plant species (Ort, 2001). Low light conditions limit 

photosynthetic rate via low photonic energy input to the photosystems, while high light 

conditions can saturate the photosystems, which may cause photoinhibition of PSII and 
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subsequently reduce photosynthetic outputs (Takahashi and Badger, 2011; Yamori, 

2016). 

Photoinhibition is the inactivation of photosynthetic machinery or competence 

due to irreversible photooxidative damage to PSII which has been associated with 

excess light absorption by the manganese cluster within the oxygen-evolving complexes 

(OEC) (Kato et al., 2003; Lichtenthaler and Burkart, 1999; Takahashi and Badger, 2011). 

Reactive oxygen species (ROS) are produced within the electron transport chains (ETCs) 

of both photosystems during light reactions (Gururani et al., 2015). The ROS produced 

during light stress inhibit PSII leading to the damage of PSI, which has less efficient 

repair mechanisms when electrons from PSII exceed the capacity of PSI electron 

acceptors (Yamori, 2016). When light energy entering PSII is not fully utilized, singlet 

chlorophyll is converted to deleterious triplet chlorophyll, which can convert oxygen 

(O2) into the ROS singlet oxygen (1O2) (Ksas et al., 2015; Pospίšil, 2016).  

During electron transport, ROS can be formed through the single-electron 

reduction of oxygen (O2) to form superoxide anion radical singlet oxygen (1O2) and 

through the two-electron oxidation of water (H2O) to form hydrogen peroxide (H2O2), 

which is then reduced to hydroxyl radicals (HO) and singlet oxygen (1O2) (Gururani et al., 

2015; Pospίšil, 2016). When ROS concentrations are maintained at low levels under 

moderate stress, they serve as signaling molecules to activate acclimation responses to 

stress and programmed cell death (Pospίšil, 2016). Left unchecked by scavenging 

systems, ROS cause significant damage to biological systems due to oxidation of nucleic 
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acids, lipids, membranes, and proteins (Bartwal et al., 2013). Hydroxyl radicals (OH) are 

the primary ROS responsible for the oxidation of proteins and peroxidation of lipids, 

damaging important proteins near PSII like D1 and proteins in the Light Harvesting 

Complex II (LHCII) subunit (Pospίšil and Yamamoto, 2016; Yoshioka-Nishimura, 2016).  

Photodamage occurs before photoinhibition and also results in a depression in 

photosynthesis, but an important difference in this stage is that PSII is able to recover 

from damage using innate repair strategies (Yamamoto et al., 2014).  Plants have 

evolved complex photoprotection mechanisms to avoid or negate the effect of 

photoinhibition that include leaf and chloroplastic movement, structural changes to the 

thylakoid membrane, ROS scavenging systems, non-photochemical quenching (NPQ) of 

chlorophyll fluorescence, photorespiration, and cyclic electron flow (CEF) around PSI 

(Nath et al., 2013; Takahashi and Badger, 2011; Yoshioka-Nishimura, 2016). In the early 

stages of high light damage to the PSII-LHCII complex, tolerance mechanisms 

concentrate on replacing damaged DI proteins (Yamamoto, 2016). Both lipophilic and 

hydrophilic antioxidant compounds and enzymes scavenge for ROS to protect against 

excessive oxidative damage (Bartwal et al., 2013). Carotenoids, which are lipophilic 

molecules, function as antenna pigments within light-harvesting complexes to reduce 

photodamage caused by the triplet state of chlorophyll molecules (Bian et al., 2015).  

Other antioxidant scavenging systems include glutathione, ascorbate, 

tocopherol, and their associated enzymes such as superoxide dismutase, catalase, and 

peroxidase (Tripathy and Oelmüller, 2012). NPQ is activated though a change in pH via 
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protonation of antenna components within light harvesting complexes or based on the 

activity of xanthophyll cycles (Ruban, 2016). LHCII proteins within thylakoids will form 

reversible aggregates that work to dissipate excessive light energy through the 

xanthophyll cycle as heat via NPQ (Pospίšil and Yamamoto, 2016). Under high light, 

epoxidized xanthophylls are de-epoxidized and then return to their original epoxidized 

forms via non-radiative heat dissipation, facilitating the release of excess energy from 

the light harvesting complex (Latowski et al., 2011; Niyogi et al., 1997). 

A number of photoprotective mechanisms have been developed by plants for 

avoidance of high light, repair of essential photosynthetic components, and ROS 

sequestration systems to prevent photoinhibition (Porcar-Castell, et al., 2014; Tyystjärvi, 

2013).  Leaf morphology and anatomy can also change in relation to light conditions. 

Sun leaves tend to be thicker and smaller as compared to the wide, thin blades of shade 

leaves (see appendix) (Kim et al., 2005). Photoinhibition is most likely to take place 

within the first leaf layers since this region has the greatest exposure to incoming solar 

radiation (Pinto et al., 2011). Plants are able to alter the leaf angle, curl leaves, or 

convert to C4 or Crassulacean Acid Metabolism (CAM) to avoid ROS production (Gowik 

and Westhoff, 2011; Mittler, 2002). Chlorophyll congregate at the cell walls parallel to 

the direction of incoming light to avoid excessive light and maximize CO2 absorption via 

larger intracellular air spaces (Harada et al., 2003; Takahashi and Badger, 2011). 

Thylakoids undergo stacking and unstacking along with shrinkage and swelling in 

response to high light situations to support the quick replacement of damaged proteins, 
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in particular the degradation of impaired D1 proteins by FtsH protease (Yamamoto, 

2016; Yoshioka-Nishimura, 2016).  

1. 6 Lighting Options in Controlled Environments  

The use of supplemental or sole-source artificial lighting in controlled 

environments is often necessary to ensure normal and dynamic plant growth (Darko et 

al., 2014). Artificial lighting within controlled environments must supply plants with 

energy to fuel photosynthesis and signal developmental changes over the entire growth 

cycle (Darko et al., 2014; Massa et al., 2015). Several lighting options are available for 

use in controlled environments. The most common artificial lighting sources used for 

plant growth include metal-halide (MH) lamps, high pressure sodium (HPS) lamps, 

incandescent lighting, fluorescent lighting, and light emitting diodes (LED) (Massa et al., 

2015; Wheeler, 2008). Fluorescent lighting, incandescent lighting, and MH and HPS 

lighting all produce excess radiant heat and have reduced lifespans as compared to LED 

lighting (Singh et al., 2015). While MH lamps and HPS lighting have some of the highest 

PAR efficiency rates among other common lighting sources, LED lighting has the 

maximum PAR efficiency as well as the ability to target specific wavelengths intensity 

(Darko et al., 2014).  

LEDs are a solid-state lighting device that uses a chip as a diode to generate 

photons of light at varying wavelengths (Singh et al., 2015; Figure 1.5). As a lighting 

option, LEDs are energy efficient, low density, can maintain a continuous light output 

over several years, and do not contain harmful chemicals (Bula et al., 1991; Morrow, 
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2008; Olle and Viršile, 2013). They also emit low heat radiation and can provide high 

light intensities, while allowing wavelengths to be changed throughout the growing 

period (Darko et al., 2014; Sabzalian et al., 2014; Sandahl et al., 2013). Currently, LED 

technologies are looking to improve intensity as well as longevity of the commercial bars 

and panels. Future challenges include adapting LED technologies to suit existing 

production systems and reducing investment or installation costs for LED lighting 

systems. Currently, LED technologies offer a more precise way to measure or control the 

impacts of light quality, intensity, and duration on plant growth and development in 

research or commercial applications.   
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Figure 1.1 The main photoreceptors in plants and their associated absorption 
spectrums (Ouzounis et al., 2015). 
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Figure 1.2 Overview of how elicitors regulate gene expression to influence the 
production of secondary metabolites and signaling molecules (Baenas et al., 
2014).  
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Figure 1.3 Cross-sectional light micrographs of (a) sun (360 μmol∙m−2∙s−1) and (b) 
shade (60 μmol∙m−2∙s−1) leaves of C. album (Yano and Terashima, 2001). 
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Figure 1.4 Illustration of C3 photosynthetic reactions and electron transport 
within the thylakoid membrane (Yamori, 2016). 
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Figure 1.5 Diagram of internal structure of LED 
(Singh et al., 2015). 
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Chapter Two Screening of Microgreen Brassica, Herb, and Lettuce Cultivars 

over Different Environments for Biomass and Nutritional Quality Parameters 
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Abstract B 

Microgreens are a relatively new and diverse specialty leafy greens category. 

Reports have suggested microgreens have more concentrated nutritional content as 

compared to their mature counterparts. Shoot metabolite concentrations can be 

modulated by microclimate environmental conditions and genotype. The objective of 

this thesis was to measure changes in biomass and nutritional content of fifteen 

commercially-grown microgreen cultivars in a greenhouse over four growing seasons in 

Knoxville, TN in 2016. Microgreen cultivars were divided into three groups: brassica, 

herb, and lettuce. The cultivars were grown in solid-bottom plastic germination trays (26 

x 52 x 3 cm) using a soilless peat mix (Fafard germination mix 59-69%; Agawam, MA) 

and misted daily. All aboveground fresh mass (FM) was harvested after the microgreen 

cultivars reached the first to second true leave stage. Environmental and genetic factors 

influenced the growth and nutritional content of the different microgreen cultivars. 

Brassica microgreens had the highest FM as well as the shortest production and 

germination times throughout all seasons, as compared to the herb and lettuce 

microgreens. The herb microgreens had the highest concentrations of shoot tissue 

carotenoids and minerals, but the longest germination times as compared to brassica 

and lettuce microgreens. Information on the nutritional content of different microgreen 

cultivars may improve consumer knowledge, leading to healthier options. Cultivation 

data on each microgreen cultivar groups over the course of a year can benefit 

microgreen producers and home growers.     
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2. 1 Introduction 

 Microgreens have been grown commercially since the 1980s and found major 

success among innovative restaurants and health conscious consumers (Bliss, 2014; 

Kaiser and Ernst, 2012).  The classification of a crop as a microgreen is based on its size 

and maturity. Microgreens are immature plants that are 2-7 cm in height, typically 

harvested after 7 to 14 d depending on species, and sold or consumed with the stem 

and fully developed cotyledon leaves attached (Xiao et al., 2012). Microgreens are 

commonly grown in greenhouses or controlled environments, with or without artificial 

lights, to protect the sensitive young plants from harsh environmental conditions (Di 

Gioia et al., 2016; Murphy et al., 2010).  

Many different types of herbs, tender annuals, and vegetables can be grown as 

microgreens due to the broad classification of this specialty leafy crop. Members of the 

Brassicaceae, Asteraceae, Chenopodiaceae, Lamiaceae, Apiaceae, Amarillydaceae, 

Amaranthceae, Fabaceae, and Cucurbitaceae are popularly used for microgreens due to 

their fast growing time, unique seedling characteristics, seed availability, and simple 

germination/cultivation needs (Kyriacou et al., 2016).  

During the early stages of development, secondary metabolites are crucial to 

protect the vulnerable seedling from pathogens, herbivory, or harsh environmental 

factors (Bourgaud et al., 2011; Chacón et al., 2013). Secondary metabolites that are 

initially concentrated within the endosperm or cotyledon are most likely contributions 

from the mother plant; secondary metabolites are produced de novo within the various 
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developing tissues of seedlings (Chacón et al., 2013).  Many of the phytochemicals 

present in vegetables are strong antioxidants that can protect consumer health via 

bioactive mechanisms that quench free radicals which can cause oxidative stress as well 

as deoxyribonucleic acid (DNA) and membrane damage throughout the body (Chu et al., 

2002).  The synergistic defense roles of the different antioxidants and other 

phytochemicals reduce the risk for the development of chronic diseases like 

cardiovascular disease, cancer, and diabetes (Chu et al., 2002; Dillard and German, 

2000; Liu, 2013; Van Duyn and Pivonka, 2000). 

Microgreens are nutrient-dense vegetables with a host of bioactive compounds 

and usually have higher levels of phytonutrients as compared to their mature forms 

(Vaštakaitė and Viršlė, 2015; Xiao et al., 2012). Microgreens contain essential minerals 

along with antioxidants and other phytonutrients like ascorbic acid (vitamin C), 

phylloquinone (vitamin K), tocopherols (vitamin E), glucosinolates and carotenoids 

(Kopsell and Sams, 2013; Sun et al., 2013; Xiao et al., 2016; Xiao et al., 2014). The 

objective of this study was to conduct a genetic screening of 15 commercially grown 

microgreen cultivars for cultivation requirements, biomass and nutritional content and 

to measure changes in quality parameters over four growing seasons in a protected 

environment. Expanding the available information about the concentration of 

phytonutrients in microgreen shoot tissue within three different cultivar groups will 

improve consumer and producer knowledge concerning nutritional content.  
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2. 2 Materials and Methods 

Plant Production and Growing Conditions 

A total of fifteen cultivars were grown in a greenhouse at ambient light and 

temperature conditions over the course of four seasons categorized as winter, spring, 

summer, and fall (Table 2.1). The cultivars were grown using a soilless peat mix (Fafard 

germination mix 59-69%; Agawam, MA) in solid-bottom plastic germination trays (26 x 

52 x 3 cm) and misted daily using a fine spray nozzle head (7.5 L∙min-1). The cultivar 

groups represented three categories of leafy specialty microgreens: lettuce, herb, and 

brassica (Table 2.1; Johnny’s Selected Seeds, Winslow, ME). The various groups of 

cultivars were selected to give a more inclusive comparison of the different growth 

habits and nutrition elements of different microgreen crops as well as their commercial 

popularity. The experiment was arranged in a randomized complete block design, with 

four replications.  The main effects of cultivars were evaluated over four consecutive 

growing seasons (Table 2.2).  

All aboveground fresh mass (FM) from the microgreens was harvested after the 

cultivars reached the first to second true leave stage. If the average microgreen height 

per individual block was above 2 cm (± 0.5 cm), shoot tissues were cut and collected 

using electric hand held shears (model GSN30; Black+Decker Inc., New Britain, CT). If the 

average microgreen height per individual block was ≤ 2 cm (±0.5 cm), shoot tissues were 

cut and collected using small hand shears. Height (cm), FM (g∙plant-1), and dry mass 

(DM) (g∙plant-1) data were collected at harvest. Fresh microgreen tissue was stored at -
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20 ±1˚C prior to sample analyses. A 20-g sample of frozen tissue was freeze-dried 

(model 6 L FreeZone; LabConCo, Kansas City, MO) at -25 ± 1 ˚C for 48 h.  

Shoot Tissue Pigment Extraction 

The procedure from Kopsell et al. (2012) was used for pigment extraction. A 0.1-

g (± 0.05 g) sample of freeze-dried tissue was weighed out into glass culture tubes (16 x 

100 mm) and then rehydrated with 0.8 mL of ultrapure water for 10 min, and then 2.5 

mL of tetrahydrofuran (THF) was added to begin extraction. After rehydration, 0.8mL of 

the internal standard ethyl-β-8’-apo-carotenoate (Sigma-Aldrich, St. Louis, MO) was 

added to measure the efficiency of the extraction process. Samples were homogenized 

using a drill press set at 540 rpm in a Potter-Elvehjem (Kontes, Vineland, NJ) tissue 

grinding tube using twenty insertions. After homogenization, the sample was placed in a 

centrifuge for 5 min at 500 gn. The supernatant was removed and the sample pellet was 

then re-suspended in 2 mL THF and homogenized with the same extraction technique 

for a total of three extractions until the supernatant was colorless. The collected total 

supernatant was then reduced to 0.5 mL using nitrogen gas (N-EVAP 111; Organomation 

Inc., Berlin, MA). Acetone was added to the concentrated supernatant bringing it up to 

the final volume of 5 mL. A 2 mL portion of the solution was filtered through a 0.2-μm 

polytetrafluoroethylene (PTFE) filter (Model Econofilter PTFE 25/20, Agilent 

Technologies, Wilmington, DE) using a 5-mL syringe (Becton, Dickinson and Company, 

Franklin Lakes, NJ) and collected into amber crimp-top vials for high-performance liquid 

chromatography (HPLC) analysis.  
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Shoot Tissue Pigment HPLC Analysis 

Pigments were separated using an Agilent 1200 series HPLC unit with a 

photodiode array detector (Agilent Technologies, Palo Alto, CA). Separation of 

chemically similar pigments was accomplished using an analytical scale (4.6 mm i.d. x 

250 mm) 5 μm, 200 Å polymeric RP-C30 column (ProntoSIL, MAC-MOD Analytical Inc., 

Chadds Ford, PA). The thermostatted compartment column set at 30 ˚C was equipped 

with a 5-μm guard cartridge (4.0 mm i.d. x 10 mm) and holder (ProntoSIL). All 

separations were carried out isocratically using a binary mobile phase of 11% methyl 

tert-butyl ether (MTBE), 88.99% methanol (MeOH), and 0.01% 44rimethylamine (TEA) 

(v/v/v). Eluted compounds from a 10 μL injection detected pigments at 453 (carotenoids 

and internal standard), 652 [chlorophyll a (Chl a)], and 665 [chlorophyll b (Chl b)] nm. 

Data were collected, recorded, and integrated using ChemStation Software (Agilent 

Technologies). Peak assignments for pigments were performed by matching retention 

times and line spectra obtained from the photodiode array detection using the external 

standards [α-carotene (AC), antheraxanthin (ANT), β-carotene (BC), Chl a, Chl b, lutein 

(LUT), neoxanthin (NEO), violaxanthin (VIO), and zeaxanthin (ZEA) from ChromaDex Inc., 

Irvine, CA].  

Shoot Tissue Mineral Element Analysis 

The procedure from Barickman et al. (2013) was used for mineral element 

analyses from freeze-dried tissue. A 0.2-0.5 g (± 0.05 g) subsample of ground, freeze-

dried shoot tissue was combined with 10 mL HNO3 (70%).  Samples were sealed in a 
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closed vessel microwave digestion system (ETHOS series, Milestone Inc., Shelton, CT). 

The digestion procedures used follow those for organically based matrices (U.S. 

Environmental Protection Agency, 1996). The digested samples were then diluted with 

2% HNO3/ 0.5% HCl (v/v), and elemental measurements were conducted using an 

Agilent 7500 ce ICP-MS system (Agilent Technologies). The ICP-MS system had an 

octapole collision/reaction cell, Agilent 7500 ICP-MS ChemStation software, a Micromist 

nebulizer, a water-cooled quartz spray chamber, and a CETAC (ASX-510, CETAC Inc., 

Omaha, NE) autosampler.  The instrument was optimized daily in terms of sensitivity (Li, 

Y, Tl), level of oxide (Ce), and doubly charged ion (Ce) using a tuning solution containing 

10 µg·L-1 of Li, Y, Tl, Ce, and Co in a 2% HNO3/0.5% HCl (v/v) matrix. 

Shoot Tissue Glucosinolate Extraction  

The procedure from Charron et al. (2004) was used for glucosinolate extraction 

from freeze-dried tissue and analysis. A 0.2 g (± 0.05 g) sample of freeze dried tissue was 

combined with 1 mL benzyl GS solution (1mM), to act as the internal standard. 2.0 mL 

MeOH and 0.1 mL barium-lead acetate (0.6 M) were then added to the sample in a 

culture tube (16 x 100 mm) and shaken at 60 rpm for 60 min Each tube was then 

centrifuged at 2000 gn for 20 min at 22 °C. A 0.5 mL aliquot of the supernatant was then 

combined with a 1 mL column that consisted of 0.3mL DEAE Sephadex A-25 (Sigma-

Aldrich). The sample was then desulfated using the procedure by Raney and McGregor 

(1990).  
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Shoot Tissue Glucosinolate HPLC Analysis 

Extracted desulfoglucosinolates were separated using an HPLC unit with a 

photodiode array detector (1100 series, Agilent Technologies), using a reverse-phase 

250 x 4.6 mm i.d., 5 μm Luna C18 column (Phenomenex Inc., Torrance, CA) at a 

wavelength of 230 nm. The temperature of the column was set at 40 °C with a flow rate 

of 1 mL⋅min-1. The gradient elution parameters were set to 100% water for 1 min, 

followed by a 15 min linear gradient set to 75% water: 25% acetonitrile. Solvent levels 

were then held constant for 5 min and then returned to 100% water for the final 5 min. 

Identification of desulfoglucosinolates took place using a comparison of retention times 

of authentic standards or previously reported results (Hansen et al., 1995; Kushad et al., 

1999). 

Non-structural Water Soluble Carbohydrate Extraction  

Nonstructural water soluble carbohydrates were extracted from kale tissues 

based on the methods of Muir et al. (2009) and Thavarajah et al. (2016), with slight 

modifications.  Microgreen fresh tissue was ground using a pestle and mortar for 

homogenous sub-samples. A 0.1-g sub-sample of ground, freeze-dried tissue will be 

extracted in a 15 mL test tube by adding 2 mL of RO water which was heated to 80 °C, 

vortexed, and then shaken for 15 min at 200 rpm. Samples will then be centrifuged at 

4400 rpm for 20 min. A 1.0-mL aliquot of the supernatant will then be transferred into a 

new 15 mL test tube and placed into a stream of N gas until it is reduced to 0.5 ml. Once 
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dried, samples will be re-dissolved in 2.5 mL of RO water. Samples will then be put 

through a 0.2 μm syringe filter and collected in a 2 mL HPLC vial for analysis.  

Soluble Sugars HPLC Analysis 

Separation parameters and carbohydrate quantification will be carried out with 

authentic standards using an HPLC with an evaporative light scattering (ELS) detector 

(Agilent Technologies). The ELS detector had an N gas flow rate of 1.6 ml, evaporative 

gas temperature of 80 °C, and a nebulizer gas temperature at 50 °C. Chromatographic 

separations were achieved using a Rezex RCM Monosaccharide Ca+2 (8%) 300 x 7.8mm 

i.d., 8 μm analytical scale column (Phenomenex, Torrance, CA, USA) which allows for 

effective separation of chemically similar compounds. The column was equipped with a 

Carbo-Ca 4 x 3.0 mm i.d. security guard cartridge and holder (Phenomenex), and was 

maintained at 80 °C using a heated column compartment. All separations will be carried 

out isocratically using a mobile phase of 100% RO water. The flow rate was 0.6 mL per 

min, with a run time of 15 min, followed by a 2 min equilibration prior to the next 

injection. Data for eluted compounds were collected, recorded, and integrated using 

ChemStation Software (Agilent Technologies). Peak assignment values for sucrose, 

glucose, and fructose were performed by comparing retention times from the ELS 

detector using external standards (Sigma-Aldrich, St. Louis, MO).  

Statistical Analyses 

A randomized complete block design was used (Figure 2.1). Data sets were 

analyzed by GLM procedure using statistical software (version 9.4; SAS Institute, Cary, 
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NC).  Treatment means were separated by least significant difference (LSD) at α=0.05. 

Plant height means were separated by Duncan’s Multiple Range Test at α=0.05. Data 

were analyzed by season, species, and cultivar. Microgreen shoot tissue pigments, shoot 

tissue mineral elements, and carbohydrate data are presented on a DM basis.  

Season one is winter, season two is spring, season three is summer, and season 

four is fall. Species one is Brassica cultivars (red cabbage, Kogane Chinese cabbage, 

Champion collards, Red Giant mustard, and Hong Vit radish), species two is herb 

cultivars (Genovese basil, Italian Large Leaf basil, Calypso cilantro, Grosfruchtiger fennel, 

and Giant of Italy parsley), and species three is lettuce cultivars (Buttercrunch lettuce, 

Carioca lettuce, Red Sails lettuce, Vulcun lettuce, Winter Density lettuce) (Table 2.1).  

2. 3 Results  

Environmental data 

The photosynthetically active radiation (PAR) levels averaged 161 µmol⋅m-2⋅s-1, 

368 µmol⋅m-2⋅s-1, 467 µmol⋅m-2⋅s-1, and 417 µmol⋅m-2⋅s-1 ; no shade system was 

used (Table 2.2). Daily light integral (DLI) values averaged 14 mol·m-2·d-1, 32 mol·m-2·d-1, 

40 mol·m-2·d-1, and 36 mol·m-2·d-1 for winter, summer, spring, and fall seasons, 

respectively (Table 2.2; Figure 2.2; Figure 2.3). The relative humidity (RH) levels 

averaged 44%, 50%, 57%, and 64% for winter, spring, summer, and fall seasons, 

respectively (Table 2.2; Figure 2.3). Average air temperatures were 20 °C, 26 °C, 25 °C, 

and 29 °C for winter, spring, summer, and fall seasons, respectively (Table 2.2; Figure 

2.3). Fall had the lowest temperature variance between high and low average 
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temperatures, while summer had the highest temperature variance (Table 2.2; Figure 

2.3). Values for PAR, DLI, RH, and average air temperatures had the greatest values 

during the summer and lowest values during the winter (Table 2.2). Values for PAR, DLI, 

RH, and average temperature levels generally increased from winter to fall (Table 2.2). 

Brassica, Herb, and Lettuce Microgreen Cultivar Morphology 

The germination time and total production time (germination to harvest) were 

significantly different for season, cultivar, and season x cultivar interactions for all 

microgreens. Shoot FM was significantly different for all microgreens for season and 

cultivar; brassica and lettuce cultivars had season x cultivar interactions for FM, while 

herbs did not. Shoot DM was significantly different for cultivar. Plant height was 

significantly different for season and cultivar interactions for all microgreens. Herb 

microgreens had season x cultivar interactions for plant height, while brassica and 

lettuce microgreens did not.  Shoot tissue %moisture for all microgreens was 

significantly different for cultivar and season x cultivar interactions. Shoot tissue %DM 

was significantly different for all microgreens for cultivar and cultivar x season 

interactions. Brassica and herb microgreens had significant differences in shoot tissue 

%moisture and DM for season, while lettuce did not.  

Brassica, herb, and lettuce microgreens had the fastest germination time and 

total production time in the summer and fall seasons (Table 2.3; Figure 2.4; Figure 2.5). 

Overall, brassica had the shortest germination and total production time followed by 

lettuce and then herb microgreens (Table 2.3; Figure 2.4). Brassicas has the greatest 
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plant heights across all seasons, while lettuce and herbs had similar plant height values 

in winter and summer (Table 2.4). All microgreens had the shortest production time in 

the summer and fall (Table 2.3; Figure 2.5). Shoot FM and DM for brassica microgreens 

increased in the spring and decreased in the winter (Table 2.5; Figure 2.6; Figure 2.7). 

Shoot FM for herb microgreens increased in the winter and decreased in the spring 

(Table 2.5; Figure 2.6). Shoot DM for herb microgreens remained relatively constant 

throughout all seasons (Table 2.5; Figure 2.7). Shoot FM and DM for lettuce microgreens 

increased in the summer and decreased in the spring (Table 2.5; Figure 2.6; Figure 2.7). 

Brassica microgreens had the greatest DM compared to all other microgreens (Figure 

2.7). Shoot tissue %moisture increased for brassica and herb microgreens in the winter 

and decreased in the spring (Table 2.5). Shoot tissue %moisture for lettuce microgreens 

increased in the fall and decreased in the spring (Table 2.5). Shoot tissue %DM for all 

microgreens increased in the spring, while it decreased for brassica and herb 

microgreens in the winter and decreased in the fall for lettuce microgreens (Table 2.5).  

Brassica, Herb, and Lettuce Microgreen Cultivar Shoot Pigments 

β-carotene for brassica and lettuce microgreens was significantly different for 

season, cultivar, and season x cultivar interactions. β-carotene for herb microgreens was 

significantly different for season and season x cultivar interactions, but not for cultivar.  

Zeaxanthin for brassica, herb, and lettuce microgreens was significantly different for 

season, cultivar and season x cultivar interactions. Lutein for brassica and lettuce 

microgreens was significantly different for season, cultivar and season x cultivar 
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interactions. Lutein for herb microgreens was significantly different for season and 

season x cultivar interactions, but not for cultivar.  Antheraxanthin for brassica, lettuce, 

and herb microgreens was significantly different for season, but not cultivar and season 

x cultivar interactions. Neoxanthin was significantly different for brassica and lettuce 

microgreens for season, cultivar, and season x cultivar interactions. Neoxanthin was 

significantly different for herb microgreens for season and season x cultivar interactions, 

but not cultivar. Violaxanthin was significantly different for brassica microgreens for 

season, cultivar, and season x cultivar interactions. Violaxanthin was significantly 

different for herb microgreens for season and season x cultivar interactions, but not for 

cultivar. Violaxanthin was significantly different for lettuce microgreens for season, 

cultivar, but not season x cultivar interactions. Total carotenoids for brassica and lettuce 

microgreens was significantly different for season, cultivar, and season x cultivar. Total 

carotenoids for brassica microgreens were significantly different for season and season 

x cultivar interactions, but not for cultivar.  

β-carotene increased for all microgreens in the summer, while NEO increased for 

all microgreens in the fall (Table 2.6; Figure 2.8). Zeaxanthin increased in the winter for 

herb microgreens, summer for brassica microgreens, and fall for lettuce microgreens 

(Table 2.6). Lutein increased in the winter for lettuce microgreens, in the summer for 

brassica microgreens, and in the fall for herb microgreens (Table 2.6; Figure 2.8). 

Antheraxanthin increased for herb microgreens in the winter, in the summer for 

brassica microgreens, and lettuce microgreens in the fall (Table 2.6). Violaxanthin 
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increased for herb in the summer and for brassica and lettuce microgreens in the fall 

(Table 2.6).   

Chlorophyll a concentrations were significantly different for brassica, herb, and 

lettuce microgreens for season, cultivar, and season x cultivar interactions. Chlorophyll b 

concentrations were significantly different for brassica, herb, and lettuce microgreens 

for season, cultivar, and season x cultivar interactions. Total chlorophyll concentrations 

were significantly different for brassica, herb, and lettuce microgreens for season, 

cultivar, and season x cultivar interactions.  

Total carotenoid content in shoot tissue increased for herb and lettuce 

microgreens in the fall, whereas brassica microgreens had increased total carotenoid 

levels in the summer (Table 2.6; Figure 2.9). In general, ZEA, LUT, and ANT levels 

increased for brassica microgreens in the summer (Table 2.6; Figure 2.8). Herb 

microgreens had increased levels of ZEA and ANT in the winter, while lettuce 

microgreens had increased levels of ZEA, ANT, and VIO in the fall (Table 2.6).  Chl a, Chl 

b, and total chlorophyll concentrations in herb and lettuce microgreens increased in the 

fall (Table 2.7). For brassica microgreens, chl a and total chlorophyll concentrations 

were increased in the fall, while chl b concentrations were increased in the winter (Table 

2.7).  

Brassica, Herb, and Lettuce Microgreen Cultivar Carbohydrates 

Sucrose concentrations in brassica, herb, and lettuce microgreens were 

significantly different for season, cultivar, and season x cultivar interactions. Glucose 
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concentrations in herb microgreens were significantly different for season, cultivar, and 

season x cultivar interactions. Glucose concentrations in brassica microgreens were 

significantly different for season and cultivar, but not season x cultivar interactions. 

Glucose concentrations in lettuce microgreens were significantly different for season x 

cultivar interactions and cultivar, but not season. Fructose concentrations in brassica, 

herb, and lettuce microgreens were significantly different for season, cultivar, and 

season x cultivar interactions. 

Sucrose, fructose, and glucose concentrations fluctuated according to cultivar 

and season (Table 2.8). Sucrose content in shoot tissue increased in the winter for herb 

and lettuce microgreens, while sucrose increased in the spring for brassica microgreens 

(Table2.8; Figure 2.11; Figure 2.12). Sucrose in shoot tissue decreased in the fall for herb 

microgreens, while sucrose decreased in the summer for brassica and lettuce 

microgreens (Table 2.8; Figure 2.10; Figure 2.11; Figure 2.12). Glucose in shoot tissue 

increased in the summer for brassica and lettuce microgreens, while glucose increased 

in the spring for herb microgreens (Table 2.8; Figure 2.10; Figure 2.11; Figure 2.12). 

Glucose in shoot tissue decreased in the fall for lettuce microgreens, while glucose 

decreased in the winter for brassica and herb microgreens (Table 2.8; Figure 2.10; Figure 

2.11; Figure 2.12). Fructose in shoot tissue increased in the fall for herb and lettuce 

microgreens, while fructose increased in the fall for brassica microgreens (Table2.8; 

Figure 2.10; Figure 2.11; Figure 2.12). Fructose in shoot tissue decreased in the winter 
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for brassica microgreens, while fructose decreased in the spring for herb and lettuce 

microgreens (Table 2.8; Figure 2.10; Figure 2.11; Figure 2.12). 

Brassica, Herb, and Lettuce Microgreen Cultivar Minerals 

 Tissue Ca was significantly different for brassica and lettuce microgreens for 

season, cultivar, and season x cultivar interactions. Tissue Ca was significantly different 

for herb microgreens for season and cultivar, but not season x cultivar interactions. 

Tissue K was significantly different for brassica and herb microgreens for season, 

cultivar, and season x cultivar interactions. Tissue K was significantly different for lettuce 

microgreens for season and season x cultivar interactions, but not for cultivar. Tissue Mg 

was significantly different for brassica microgreens for season and season x cultivar 

interactions, but not for cultivar. Tissue Mg was not significantly different for herb 

microgreens for season, cultivar, and season x cultivar interactions. Tissue Mg was 

significantly different for lettuce microgreens for season, but not for cultivar and season 

x cultivar interactions. Tissue P was significantly different for brassica and herb 

microgreens for season, cultivar, and season x cultivar interactions. Tissue P was 

significantly different for lettuce microgreens for season and cultivar, but not season x 

cultivar interactions. Tissue S was significantly different for brassica and herb 

microgreens for season, cultivar, and season x cultivar interactions.  Tissue S was 

significantly different for lettuce microgreens for season and cultivar, but not season x 

cultivar interactions.  
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Macronutrients within microgreen shoot tissues fluctuated according to season 

and cultivar. Ca increased in brassica and herb microgreens in the winter, whereas Ca 

decreased in the fall for both microgreens (Table 2.9). Ca increased in lettuce 

microgreens in the summer, whereas Ca decreased in the spring (Table 2.9). K increased 

for all microgreens in the winter, while K decreased for brassica and lettuce microgreens 

in the fall and herb microgreens in the spring (Table 2.9). Mg increased for herb 

microgreens in the winter, brassica microgreens in the spring, and lettuce microgreens 

in the summer (Table 2.9). Mg decreased in the fall for brassica and herb microgreens, 

whereas Mg decreased in the winter for lettuce microgreens (Table 2.9). P increased for 

brassica and herb microgreens in the winter and decreased in the fall (Table 2.9). P 

increased in lettuce microgreens in the summer and decreased in the spring (Table 2.9). 

S increased for brassica and herb microgreens in the winter and decreased in the 

summer, whereas S increased for lettuce microgreens in the summer and decreased in 

the spring (Table 2.9).  

 Tissue B was significantly different for brassica microgreens for season, cultivar, 

and season x cultivar interactions. Tissue B was significantly different for herb 

microgreens for season, but not for cultivar and season x cultivar interactions.  Tissue B 

was significantly different for lettuce microgreens for season and cultivar, but not for 

season x cultivar interactions. Tissue Cu was significantly different for brassica and herb 

microgreens for season, cultivar, and season x cultivar interactions. Tissue Cu was 

significantly different for lettuce microgreens for season and cultivar, but not for season 
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x cultivar interactions. Tissue Fe was significantly different for brassica and herb 

microgreens for season, cultivar, and season x cultivar interactions. Tissue Mn was 

significantly different for brassica and herb microgreens for season, cultivar, and season 

x cultivar interactions. Tissue Mn was significantly different for lettuce microgreens for 

season and season x cultivar interactions, but not for cultivar. Tissue Mo was 

significantly different for brassica, lettuce, and herb microgreens for season, cultivar, 

and season x cultivar interactions. Tissue Se was significantly different for brassica 

microgreens for season, cultivar, and season x cultivar interactions. Tissue Se was 

significantly different for herb microgreens for season, but not for cultivar and season x 

cultivar interactions. Tissue Se was significantly different for lettuce microgreens for 

season and season x cultivar interactions, but not for cultivar. Tissue Zn was significantly 

different for brassica microgreens for season, cultivar, and season x cultivar interactions. 

Tissue Zn was significantly different for herb microgreens for season, but not for cultivar 

or season x cultivar interactions. Tissue Zn was not significantly different for lettuce 

microgreens for season, cultivar, and season x cultivar interactions.  

Micronutrients within microgreen shoot tissue fluctuated according to season 

and cultivar. B increased in brassica and herb microgreens in the winter, whereas B 

increased in lettuce microgreens in the spring. B decreased in all microgreens in the fall 

(Table 2.10). Cu increased for all microgreens in the winter and decreased for brassica 

and herb microgreens in the summer and lettuce microgreens in the fall (Table 2.10). Fe 

increased for all microgreens in the summer and decreased for all microgreens in the 
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winter (Table 2.10). Mn increased for all microgreens in the winter and decreased for all 

microgreens in the fall (Table 2.10). Mo increased for brassica and herb microgreens in 

the winter and increased for lettuce microgreens in the summer (Table 2.10). Mo 

decreased for herb and lettuce microgreens in the spring and decreased for brassica 

microgreens in the fall (Table 2.10). Se and Zn increased for all microgreens in the winter 

(Table 2.10). Se decreased for all microgreens in the fall (Table 2.10). Zn decreased for 

brassica and herb microgreens in the summer and decreased for lettuce microgreens in 

the spring (Table 2.10).     

2. 4 Discussion  

Growth and Morphology of brassica, herb, and lettuce microgreens 

 Overall, brassica microgreens had the shortest germination time and total 

production time over all seasons, followed by lettuce and then herb microgreens. 

Germination time can be attributed to several environmental factors such as soil and air 

temperature, RH, as well as water, O2:CO2, and light levels. Seed dormancy is regulated 

through hormonal changes in Abscisic acid (ABA) or Gibberellic acid (GA) levels within 

embryonic tissue, which is triggered by environmental signals to promote or delay 

germination (Corbineau et al., 2014; Nonogaki, 2014).  While higher temperatures can 

speed up germination, soil media temperatures in excess of 30 °C can reduce 

germination by inducing seed dormancy and limiting radicle growth as studied in 

brassica and lettuce crops (Derkx and Karssen, 1993; Elson et al., 1992; Kondra, 1983; 

Kristie et al., 1981). Brassica, herb, and lettuce microgreens had the shortest 
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germination time in the spring and fall seasons, which is consistent with previous 

studies since summer had the maximum temperature ranges, while winter had the 

lowest temperature ranges.     

Total production time was shortest for all microgreens in the fall whereas it was 

the longest in the winter. Shoot FM varied according to season and cultivar. Brassica 

microgreens had the greatest FM in the spring and fall, whereas herb microgreens had 

the greatest FM in the fall and lettuce microgreens had the greatest FM in the summer. 

In general, all microgreens had delayed germination and production times as well as 

reduced FM during the conditions of the winter season. A previous study reported the 

most suitable irradiation for optimal microgreen production ranges from 320–440 

μmol∙m−2∙s−1, with no significant influence on plant growth factors from higher light 

treatments (Samuoliené et al., 2013). These findings support the relationship between 

reduced microgreen growth and PAR differences as these conditions changed between 

winter and all other seasons in this study. Plant height was increased for brassica 

microgreens in the spring, while plant height increased in the winter for herb and 

lettuce microgreens. Hypocotyl length could increase as a result of lower radiation levels 

which would trigger hypocotyl elongation in response to decreased light intensity as 

supported by previous microgreen studies (Carvalho and Folta, 2014; Evans et al., 1965; 

Samuoliené et al., 2013; Vaštakaitė and Viršlė, 2015).  

Shoot DM increased in brassica and lettuce microgreens in the winter, whereas 

DM increased in herbs in the fall. In contrast, DM was reported to increase when lettuce 
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roots in a hydroponic system were exposed to warmer daytime and nighttime 

temperatures (Thompson and Langhans, 1998). The DM of plant shoot tissue typically 

fluctuates in connection with light intensity and quality, which can increase CO2 

assimilation subsequently impacting metabolic and photosynthetic activity (Gerardeaux 

et al., 2009; Peterson and Zelitch, 1982; Samuoliené et al., 2013).  Additionally, DM is 

linked to K uptake, which supports the results of this study in that K concentration in 

leaves and DM of microgreens increased simultaneously during the winter (Gerardeaux 

et al., 2009; Marschner et al., 1996; Tiwari et al., 1982). Shoot tissue %moisture of 

brassica and herb microgreens increased in the winter, whereas shoot tissue %moisture 

of lettuce microgreens increased in the fall.  

Shoot Tissue Pigments in Brassica, Herb, and Lettuce Microgreens 

𝛽𝛽-carotene increased in the shoot tissue of all microgreens in the summer and 

fall seasons, respectively. LUT increased in the shoot tissue of brassica microgreens in 

the summer, herb microgreens in the fall, and lettuce microgreens in the winter. ZEA 

increased in the shoot tissue of brassica microgreens in the summer, herb microgreens 

in the fall, and lettuce microgreens in the winter. ZEA and LUT concentrations in 

microgreen shoot tissue increased in the summer and fall for brassica and herb 

microgreens and lettuce microgreens, respectively. NEO increased for all microgreens in 

the fall. ANT increased in the fall for herb and lettuce microgreens, while ANT increased 

in the summer for brassica microgreens. VIO increased in the fall for brassica and lettuce 

microgreens, while VIO increased in the summer for herb microgreens. Total carotenoid 
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content increased in the summer for brassica microgreens and in the fall for both herb 

and lettuce microgreens. Herb microgreens had the highest concentration of total 

carotenoids followed by brassica and then lettuce microgreens.  

Carotenoids are generally known for their strong antioxidant and ROS scavenging 

capabilities, but vary in their primary protective roles for human health (Brazaitytė et al., 

2015). 𝛽𝛽-carotene, LUT, and ZEA are the three of the most abundant carotenoids in 

human blood serum and can be found in green leafy vegetables (Chung et al., 2009; 

McDevitt et al., 2005; Ribaya-Mercado and Blumberg, 2004). Carotenoids decrease the 

risk of developing chronic diseases like cataracts, age-related macular degeneration, and 

certain cancers (Mayne, 1996; Rao and Rao, 2007). Carotenoids are lipid-soluble 

nutrients that diffuse through the mucosal lining of the intestine via bile and fat 

micelles; they are stored in adipose tissue and independently accumulate in different 

regions throughout the body (Furr and Clark, 1997; Nagao, 2011; Parker, 1996; Rao and 

Rao, 2007). β-carotene is the primary source of dietary vitamin A, which is important for 

proper growth and development along with eye health and functions as pro-vitamin A in 

the human diet (Burri, 1997; WHO, 2009). Vitamin A deficiency causes night-blindness, 

stunted growth, anemia, and reduced immune system resistance to infection, as well as 

xerophthalmia, which is a disease that causes blindness in children (WHO, 2009).  

While the function of BC as pro-vitamin A aids in preventing blindness, LUT and 

ZEA are the primary xanthophyll pigments that collect within the macula (Beatty et al., 

1999).  LUT and ZEA accumulate within the retinal region of the eye and protect against 
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macular degradation as well as reduce the risk of developing cataracts (Beatty et al., 

1999; Mayne, 1996). LUT and ZEA are thought to work in two ways to protect tissues 

within the eye; they filter blue light to reduce UV damage and provide antioxidant 

activity to scavenge free radicals to lessen tissue damage from light and metabolic 

activity within the retinal and macular tissues (Krinsky and Johnson, 2005; Johnson, 

2014; Ribaya-Mercado and Blumberg, 2004). Increased consumption and subsequently 

accumulation of LUT and ZEA within the macula has been linked to slowing the 

development of macular degradation (Berg and Lin, 2014; Koushan et al., 2013).  

β-carotene responded similarly for all microgreens within the screening, while 

ZEA+LUT content responded differently according to cultivar and season. Carotenoid 

concentrations are highly impacted by environmental growing conditions along with 

genotype since the concentrations commonly differ by plant species and cultivar 

(Brazaitytė et al., 2015; Czeczuga, 1987; Kopsell et al., 2004).  Carotenoids are an 

integral part of the LHC and actively function as antioxidants within biological systems. 

Therefore, their content can fluctuate with changes in light quality, quantity, and quality 

(Cazzonelli, 2011; Kopsell and Sams, 2013; Yamori, 2016). Previous studies have shown 

moderate light radiation, generally below 520 and 540 μmol∙m−2∙s−1, increased 

chlorophyll and secondary metabolite production in microgreens (Brazaitytė et al., 2015; 

Samuolienė et al., 2013). β-carotene and ZEA+LUT content in shoot tissue of all 

microgreens increased in connection with the increased PAR levels in the summer and 

fall which suggests additional light stress placed on microgreens in the summer and fall 
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could up-regulate carotenoid production to protect sensitive shoot tissue from light 

damage and photoinhibition.  

Non-Structural, Water Soluble Carbohydrates in Brassica, Herb, and 

Lettuce Microgreens 

Water soluble carbohydrate concentrations in microgreen shoot tissue differed 

by cultivar and season. Brassica microgreens had the highest glucose concentration in 

shoot tissue, while herb microgreens had the second highest glucose concentration in 

shoot tissue. Lettuce microgreens had higher sucrose and fructose concentrations than 

glucose concentrations in shoot tissue. Recent studies have measured non-structural, 

water soluble carbohydrates in brassica microgreens with concentrations varying by 

cultivar (Bulgari et al., 2016; Samuoliené et al., 2013; Vaštakaitė and Viršlė, 2015). 

Altering sugar content through seasonal changes in non-structural, water soluble 

carbohydrate concentrations in microgreen shoot tissue can potentially influence 

consumer preference.  

Macro- and Micro-Nutrients in Brassica, Herb, and Lettuce Microgreens 

Ca increased in the shoot tissue of brassica and herb microgreens in the winter 

and decreased for brassica and herb microgreens in the fall. Ca increased in the shoot 

tissue of lettuce microgreens in the summer and decreased in the spring. K increased in 

the shoot tissue of all microgreens in the winter and decreased for brassica and lettuce 

microgreens in the fall, while K decreased in lettuce microgreens in the summer. Mg 

decreased in the shoot tissue of brassica and herb microgreens in the fall. Mg decreased 
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in the shoot tissue of lettuce microgreens in the winter. Mg increased in the spring for 

brassica microgreens, in the winter for herb microgreens, and in the summer for lettuce 

microgreens. B increased in shoot tissue of brassica and herb microgreens in the winter, 

while B increased in the spring for lettuce microgreens. Cu increased for all microgreens 

in the winter. B decreased in the shoot tissue of all microgreens in the fall. Fe decreased 

in the shoot tissue of all microgreens in the winter and increased in all microgreens in 

the summer. Zn increased in the shoot tissue of all microgreens in the winter, while it 

decreased in the spring for lettuce microgreens and in the summer for brassica and herb 

microgreens. Se and Mg increased for all microgreens in the winter.  

Fe, Mg, K, Cu, Mn, S, and Zn are important mineral nutrients involved in the 

photosynthetic process as integral constituents of molecules or chemical reactions and 

influence biomass accumulation in plants (Ericsson, 1995; Wilson, 1988).  Microgreen 

shoot tissue had the highest mineral concentrations of Fe, Mg, and Zn. The general 

concentration of minerals within the shoot tissue of all cultivars in this study agrees with 

the ranges of previous studies (Kopsell and Sams, 2013; Pinto et al., 2015; Weber, 2017). 

While the physical properties of media control nutrient availability, a previous study 

reported minimal impact of media on mineral concentrations in lettuce microgreens 

(Pinto et al., 2015). In contrast, another study found that media significantly impacted 

mineral accumulation in brassica microgreens. They reported increased mineral 

concentrations for microgreens grown in peat-based media (Di Gioia et al., 2016). The 

increased mineral concentrations of microgreens grown in peat-based media can be 
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attributed to the existing nutrient charge and pH level of commercially available peat-

based growing media. Also, minerals within the municipal water supply could have 

increased the content of minerals within the microgreens shoot tissue.  

Roots provide anchorage to support aboveground biomass and are important for 

facilitating the transport of water, mineral nutrients, and metabolites to actively 

growing shoot tissue. Additionally, they produce hormones and other signaling 

molecules to help coordinate shoot metabolic activity and biomass accumulation as well 

as the production of secondary metabolites in response to environmental stress 

(Beveridge, 2000; Galen et al., 2007; Mansoorkhani et al., 2014). Plant species have 

diverse root morphology patterns that can influence their competition for mineral 

nutrients and other resources in soil (Gross et al., 1992). Seasonal temperature changes 

which increase soil media temperature can promote root growth up to a certain point, 

subsequently increasing mineral uptake, after which root growth is restricted (Cumbus 

and Nye, 1985; Kaspar and Bland, 1992; McMichael and Burke, 1998).  

Fruits and vegetables are a major source of dietary minerals, fiber, and vitamins 

(Dias, 2012; Pennington and Fisher, 2009). Mineral malnutrition is an issue that impacts 

developing and industrialized nations; insufficient dietary Fe, Zn, and Se are the three 

most common mineral deficiencies worldwide (Pinto et al., 2015; WHO, 2004). Herb 

microgreens had the highest concentrations of Zn, Se, and Fe in addition to B and Cu 

compared to brassica and lettuce microgreens. In contrast, brassica microgreens had 

the highest concentration of Mo, while lettuce microgreens had the highest 
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concentrations of Mn. Ca and K are important minerals for human development (WHO, 

2004). Ca increased in shoot tissue of brassica and herb microgreens in the winter, while 

it increased for lettuce microgreens in the summer. Whereas K was increased in all 

microgreen shoot tissue in the winter. Various minerals like B, Ca, Fe, Zn, Cu, Se, and Mo 

have been previously identified in shoot tissue of microgreens at similar concentrations 

(Kopsell and Sams, 2013; Pinto et al., 2015; Weber, 2017). Generally, the microgreens in 

this screening have greater concentration of micronutrients as compared to 

macronutrients in shoot tissue (Table 2.9; Table 2.10).  
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Commercial Name 

Scientific Name 

Seed Source Location Family Genus and Species 

Red Cabbage Brassicaceae Brassica oleracea L. var. 
capitata rubra 

Johnny’s Selected Seeds Winslow, ME 

Kogane Chinese Cabbage Brassicaceae 
Brassica rapa L. ssp. 

pekinensis 
Johnny’s Selected Seeds Winslow, ME 

Champion Collards Brassicaceae 
Brassica oleracea L. var. 

acephala 
Johnny’s Selected Seeds Winslow, ME 

Red Giant Mustard Brassicaceae Brassica juncea L. Johnny’s Selected Seeds Winslow, ME 

Hong Vit Radish Brassicaceae Raphanus sativus L. Johnny’s Selected Seeds Winslow, ME 

Genovese Basil Lamiaceae Ocimum basilicum L. Johnny’s Selected Seeds Winslow, ME 

Italian large Leaf Basil Lamiaceae Ocimum basilicum L. Johnny’s Selected Seeds Winslow, ME 

Calypso Cilantro Apiaceae Coriandrum sativum L. Johnny’s Selected Seeds Winslow, ME 

Grosfruchtiger Fennel Apiaceae Foeniculum vulgare L. Johnny’s Selected Seeds Winslow, ME 

Giant of Italy Parsley Apiaceae Petroselinum crispum L. Johnny’s Selected Seeds Winslow, ME 

Buttercrunch lettuce Asteraceae Lactuca sativa L. Johnny’s Selected Seeds Winslow, ME 

Carioca Lettuce Asteraceae Lactuca sativa L. Johnny’s Selected Seeds Winslow, ME 

Red Sails Lettuce Asteraceae Lactuca sativa L. Johnny’s Selected Seeds Winslow, ME 

Vulcun Lettuce Asteraceae Lactuca sativa L. Johnny’s Selected Seeds Winslow, ME 

Winter Density Lettuce Asteraceae Lactuca sativa L. Johnny’s Selected Seeds Winslow, ME 

Table 2.1 Fifteen commercially grown microgreens used in the cultivar screening. 
The microgreens are divided into three groups; brassica, herb, and lettuce.  
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season PAR DLI RH 
MAX. 

RH 
MIN. 
RH 

AVG. 
TEMP. 

MAX. 
TEMP. 

MIN. 
TEMP. 

winter 161 14 44 80 7 20 31 8 

spring 368 32 50 83 7 26 37 15 

summer  467 40 57 97 17 25 38 11 

fall 417 36 64 93 34 29 39 19 

Table 2.2 Greenhouse environmental data collected over four seasons in 
Knoxville, TN in 2016; PAR (µmol⋅m-2⋅s-1), daily light integral (DLI) (mol·m-2·d-1), 
relative humidity (RH) (%), maximum and minimum RH (%), temperature (°C), 
and maximum and minimum temperature (°C). a 
 
 

a mean values collected during winter (January-February), spring (March-April), 
summer (May-July), and fall (August-September) of 2016 in Knoxville, TN, USA.  
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Figure 2.1 Randomized complete block (RCB) design for microgreen cultivar 
screening. 
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Figure 2.2 Seasonal photosynthetically active radiation (PAR) 
(µmol⋅m-2⋅s-1) levels in a greenhouse in 2016.   
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Figure 2.3 Greenhouse seasonal daily light integral (DLI) (mol·m-2·d-1), 
relative humidity (%RH), and average temperature (temp.) (°C) in 
2016.  
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Figure 2.4 Seasonal germination time (day) for brassica, herb, and 
lettuce microgreens.  
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Figure 2.5 Seasonal production time (day) for brassica, herb, and 
lettuce microgreens.  
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species 
germination time 

(day) 
total production time 

(day) 
winter 

brassica 4 C 18 C 
herb 8 A 33 A 
lettuce 5 B 23 B 
LSD ∝=0.5 0.00 0.00 

spring 
brassica 3 B 15 C 
herb 6 A 24 A 
lettuce 3 B 18 B 
LSD ∝=0.5 0.00 0.00 

summer 
brassica 3 C 9 C 
herb 6 A 14 A 
lettuce 4 B 13 B 
LSD ∝=0.5 0.27 0.44 

fall 
brassica 3 B 9 C 
herb 6 A 14 A 
lettuce 2 C 13 B 
LSD ∝=0.5 0.00 0.00 

 

Table 2.3 Seasonal germination time (day) and total production time (day) of 
brassica, herb, and lettuce microgreens. a 

  

 
  

a mean values represent four replications with four blocks per treatment. The 
main effects of cultivars were evaluated over four consecutive growing seasons. 
Means with the same uppercase letter are not statistically different (𝛼𝛼 =0.05).  
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species 

plant height 
(cm) 

winter 

brassica 4.69 A 
herb 3.81 B 
lettuce 3.81 B 

spring 

brassica 5.20 A 
herb 3.20 B 
lettuce 2.42 C 

summer 

brassica 4.49 A 
herb 3.56 B 
lettuce 3.39 B 

fall 

brassica 4.66 A 
herb 3.42 B 
lettuce 3.08 C 

Table 2.4 Seasonal plant height (cm) of brassica, 
herb, and lettuce microgreens. a 

  

 
 

a mean values represent four replications with 
four blocks per treatment. The main effects of 
cultivars were evaluated over four consecutive 
growing seasons. Means were separated using a 
Duncan’s Multiple Range Test. Means with the 
same uppercase letter are not statistically 
different (𝛼𝛼 =0.05).  
 

 
 



www.manaraa.com

 

87 
 

  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

species 
FM 

(g∙plant-1) 
DM 

(g∙plant-1) % Moisture % DM 
winter 

brassica 141.28 A 6.96 A 94.71 A 5.29 C 
herb 58.83 C 4.51 C 91.51 C 8.49 A 
lettuce 78.10 B 5.53 B 92.80 B 7.20 B 
LSD ∝=0.5 4.62 0.80 0.73 0.73 

spring 
brassica 164.42 A 13.59 A 90.81 B 9.19 B 

herb 39.92 C 4.36 B 87.17 C 12.83 
A 

lettuce 59.27 B 3.90 B 92.57 A 7.43 C 
LSD ∝=0.5 10.95 0.78 0.9 0.9 

summer 
brassica 152.86 A 10.89 A 92.36 B 7.64 B 
herb 52.01 C 4.57 C 90.39C 9.61 A 
lettuce 87.07 B 5.62 B 93.13 A 6.87 C 
LSD ∝=0.5 10.5 0.78 0.68 0.68 
  fall   
brassica 155.89 A 10.53 A 93.19 A 6.81 B 
herb 51.38 C 4.08 C 91.19 B 8.81 A 
lettuce 77.67 B 4.82 B 93.50 A 6.50 B 
LSD ∝=0.5 7.33 0.65 0.63 0.63 

Table 2.5 Fresh mass (FM) (g∙plant-1), dry mass (DM) (g∙plant-1), %moisture, and 
%dry mass of shoot tissue of brassica, herb, and lettuce microgreens. a 

  
 

a mean values represent four replications with four blocks per treatment. The 
main effects of cultivars were evaluated over four consecutive growing seasons. 
Means with the same uppercase letter are not statistically different (𝛼𝛼 =0.05).  
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Figure 2.6 Seasonal FM (g∙plant-1) for brassica, herb, and lettuce 
microgreens.  
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Figure 2.7 Seasonal DM (g∙plant-1) for brassica, herb, and lettuce 
microgreens.   
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a mean values represent four replications with four blocks per treatment. The main effects of cultivars were evaluated 
over four consecutive growing seasons. Means with the same uppercase letter are not statistically different (𝛼𝛼 =0.05).  
 

 
 

 

species 𝜷𝜷-carotene Zeaxanthin Lutein Antheraxanthin Neoxanthin Violaxanthin 
Total 

Carotenoids 
mg∙g-1 DM 

winter 
brassica 0.235 A 0.014 B 0.517 A 0.032 B 0.193 A 0.149 B 1.140 A 

herb 0.184 B 0.023 A 0.255 C 0.170 A 0.140 C 0.164 A 0.935 B 

lettuce 0.231 A 0.008 C 0.434 B 0.017 C 0.163 B 0.109 C 0.961 B 

LSD ∝=0.5 0.012 0.003 0.023 0.013 0.008 0.010 0.046 

spring 
brassica 0.207 A 0.003 C 0.412 A 0.028 B 0.134 A 0.128 B 0.913 A 
herb 0.162 B 0.021 A 0.225 C 0.139 A 0.117 B 0.145 A 0.809 B 
lettuce 0.168 B 0.010 B 0.331 B 0.014 C 0.115 B 0.089 C 0.727 C 
LSD ∝=0.5 0.013 0.002 0.022 0.007 0.010 0.007 0.052 

summer 
brassica 0.299 B 0.015 A 0.557 A 0.038 B 0.277 A 0.223 B 1.408 B 
herb 0.360 A 0.018 A 0.541 A 0.129 A 0.297 A 0.347 A 1.692 A 
lettuce 0.279 B 0.017 A 0.428 B 0.095 A 0.239 B 0.240 B 1.298 B 
LSD ∝=0.5 0.032 0.004 0.059 0.036 0.029 0.033 0.138 

fall 
brassica 0.271 B 0.006 C 0.516 B 0.014 C 0.309 B 0.225 C 1.340 B 
herb 0.338 A 0.017 B 0.661 A 0.023 B 0.384 A 0.293 B 1.716 A 
lettuce 0.261 B 0.025 A 0.345 C 0.171 A 0.268 C 0.318 A 1.387 B 
LSD ∝=0.5 0.018 0.001 0.025 0.006 0.020 0.016 0.080 

 
Table 2.6 Seasonal changes in shoot carotenoid concentrations (mg∙g-1 DM) in brassica, herb, and lettuce microgreens. a 
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Figure 2.8 Seasonal BC and LUT concentrations (mg∙g-1 DM) in shoot 
tissue of brassica, herb, and lettuce microgreens. 
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Figure 2.9 Seasonal total carotenoid concentrations (mg∙g-1 DM) in 
shoot tissue of brassica, herb, and lettuce microgreens. 
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species Chl a Chl b Total Chl 
mg∙g-1 DM 

winter 
brassica 4.71 B 1.42 B 6.13 B 
herb 3.91 C 1.21 C 5.12 C 
lettuce 5.42 A 1.60 A 7.01 A 
LSD ∝=0.5 0.36 0.07 0.41 

spring 
brassica 3.26 B 1.08 B 4.34 B 
herb 3.32 B 1.05 B 4.36 B 
lettuce 4.22 A 1.17 A 5.39 A 
LSD ∝=0.5 0.33 0.09 0.42 

summer 
brassica 4.82 C 1.35 C 6.17 C 
herb 5.36 B 1.50 B 6.86 B 
lettuce 6.29 A 1.67 A 7.95 A 
LSD ∝=0.5 0.52 0.11 0.63 

fall 
brassica 5.01 B 1.36 B 6.37 B 
herb 4.61 C 1.28 C 5.89 C 
lettuce 5.86 A 1.58 A 7.44 A 
LSD ∝=0.5 0.27 0.07 0.33 

Table 2.7 Seasonal changes in chlorophyll a (Chl a), chlorophyll b (Chl 
b), and total chlorophyll (Chl) concentrations (mg∙g-1 DM) in shoot 
tissue of brassica, herb, and lettuce microgreens. a 

  

 
 

a mean values represent four replications with four blocks per 
treatment. The main effects of cultivars were evaluated over four 
consecutive growing seasons. Means with the same uppercase letter 
are not statistically different (𝛼𝛼 =0.05).  
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species sucrose glucose fructose 
mg∙g-1 DM 

winter 
brassica 8.16 C 16.62 A 12.72 B 
herb 13.65 B 12.96 B 12.99 B 
lettuce 19.48 A 12.78 B 14.42 A 
LSD ∝=0.5 0.84 0.74 0.40 

spring 
brassica 13.64 B 22.35 A 13.29 A 
herb 12.93 B 18.04 B 11.69 B 
lettuce 16.26 A 11.09 C 12.34 AB 
LSD ∝=0.5 1.83 2.29 1.42 

summer 
brassica 4.71 B 24.07 A 16.16 A 
herb 4.80 B 14.98 B 13.86 B 
lettuce 12.13 A 12.88 B 16.09 A 
LSD ∝=0.5 1.57 2.69 1.79 

fall 
brassica 4.85 B 20.47 A 14.22 C 
herb 4.56 B 17.55 B 16.38 B 
lettuce 14.60 A 14.39 C 17.92 A 
LSD ∝=0.5 1.65 1.10 1.52 

a mean values represent four replications with four blocks per 
treatment. The main effects of cultivars were evaluated over four 
consecutive growing seasons. Means with the same uppercase 
letter are not statistically different (𝛼𝛼 =0.05).  
 

 
 

Table 2.8 Seasonal changes in non-structural, water soluble 
carbohydrate concentrations (mg∙g-1 DM) in shoot tissue of brassica, 
herb, and lettuce microgreens. a 
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Figure 2.10 Seasonal changes in sucrose, glucose, and fructose 
concentrations (mg∙g-1 DM) in shoot tissue of brassica microgreens.  
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Figure 2.11 Seasonal changes in sucrose, glucose, and fructose 
concentrations (mg∙g-1 DM) in shoot tissue of herb microgreens.  

  
 
 



www.manaraa.com

 

97 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

5

10

15

20

25

winter spring summer fall

ca
rb

oh
yd

ra
te

 (m
g∙

g-1
DM

) 

Season 2016

Soluble Carbohydrates In Lettuce Microgreen 
Shoot Tissue

sucrose glucose fructose

Figure 2.12 Seasonal changes in sucrose, glucose, and fructose 
concentrations (mg∙g-1 DM) in shoot tissue of lettuce microgreens.  
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species Ca K Mg P S 

%DM 

winter 

brassica 2.12 A 5.07 A 0.61 B 0.73 A 2.35 A 

herb 1.92 A 5.47 A 0.76 A 0.68 A 0.81 B 

lettuce 1.17 B 6.30 A 0.35 C 0.46 B 0.51 C 
LSD 
∝=0.5 0.29 1.28 0.11 0.16 0.18 

spring 

brassica 1.79 A 3.44 B 0.64 A 0.54 A 1.62 A 

herb 1.37 B 2.50 C 0.64 A 0.38 B 0.45 B 

lettuce 1.02 C 3.85 A 0.38 B 0.36 B 0.28 C 
LSD 
∝=0.5 0.16 0.39 0.11 0.05 0.10 

summer 

brassica 0.99 B 4.02 A 0.45 B 0.34 C 0.24 C 

herb 1.50 A 3.37 B 0.72 A 0.42 B 0.43 B 

lettuce 1.65 A 3.02 B 0.66 A 0.51 A 1.57 A 
LSD 
∝=0.5 0.29 0.64 0.11 0.08 0.15 

fall 

brassica 0.75 C 3.31 A 0.35 B 0.22 C 0.36 C 

herb 0.10 B 3.21 A 0.51 A 0.31 B 0.51 B 

lettuce 1.24 A 2.60 B 0.53 A 0.38 A 1.31 A 
LSD 
∝=0.5 0.13 0.35 0.05 0.04 0.14 

 

Table 2.9 Seasonal changes in macronutrient concentrations (% DM) in shoot 
tissue of brassica, herb, and lettuce microgreens. a 

  

 
 

a mean values represent four replications with four blocks per treatment. The 
main effects of cultivars were evaluated over four consecutive growing seasons. 
Means with the same uppercase letter are not statistically different (𝛼𝛼 =0.05).  
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species B Cu Fe Mn Mo Se Zn 

μg∙g-1 DM  

winter 

brassica 17.03 B 41.40 B 176.98 A 151.66 C 1.84 A 0.30 C 79.15 B 

herb 26.61 A 63.25 A 271.62 A 220.18 B 1.15 B 0.41 A 96.67 A 

lettuce 16.84 B 61.84 A 276.59 A 299.47 A 0.06 C 0.35 B 66.27 B 
LSD 
∝=0.5 5.59 8.64 108.04 23.61 0.15 0.05 14.97 

spring 

brassica 16.35 A 38.49 C 203.10 B 94.43 C 0.84 A 0.14 B 61.75 A 

herb 18.15 A 44.13 B 524.30 A 116.42 B 0.22 B 0.18 AB 60.20 A 

lettuce 17.77 A 51.58 A 344.80 AB 162.96 A 0.05 C 0.23 A 53.05 B 
LSD 
∝=0.5 1.87 4.83 237.92 19.07 0.15 0.05 5.11 

summer 

brassica 12.41 AB 23.57 AB 1069.10 A 80.02 A 0.22 C 0.14 A 44.58 B 

herb 13.71 A 27.72 A 1207.70 A 66.19 A 0.59 B 0.18 A 59.84 A 

lettuce 10.85 B 22.23 B 952.40 A 70.82 A 0.79 A 0.13 A 59.18 A 
LSD 
∝=0.5 2.04 4.58 269.80 14.42 0.18 0.06 9.38 

fall 

brassica 12.30 B 30.70 A 885.50 A 65.43 A 0.14 C 0.08 A 64.16 A 

herb 13.61 A 29.96 A 793.90 A 47.48 C 0.89 A 0.03 A 60.13 A 

lettuce 10.59 C 20.88 B 886.90 A 57.76 B 0.52 B 0.02 A 60.49 A 
LSD 
∝=0.5 1.23 2.78 210.95 7.38 0.29 0.07 5.32 

Table 2.10 Seasonal changes in micronutrient concentrations (μg∙g-1 DM) in 
shoot tissue of brassica, herb, and lettuce microgreens. a 

  

 
 

a mean values represent four replications with four blocks per treatment. The 
main effects of cultivars were evaluated over four consecutive growing seasons. 
Means with the same uppercase letter are not statistically different (𝛼𝛼 =0.05).  
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Chapter Three The Impact of Duration and Light Quality of Narrow-Band 

Wavelength LEDs on Biomass, Root and Shoot Morphology, and Nutritional 

Quality of Hydroponically Grown Kale  
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Abstract C 

Kale and other leafy greens are important sources of dietary vitamins, 

minerals, and antioxidants that benefit consumer health. Specialty greens can be grown 

in controlled environments which often require the use of supplemental or sole-source 

lighting like light-emitting diodes (LEDs). Little is known about the interactions between 

light quality and duration and phytonutrient concentration in hydroponically-grown 

young leafy greens.  The objective of this thesis was to measure the impacts of different 

LED treatments on plant growth and development along with nutritional content of 

hydroponically grown ‘Premier’ kale. Kale were grown in growth chambers at 22 ℃ 

under LED panels at an average light intensity of 250 ± 10 µmol·m-2·s-1 (Orbital 

Technologies, Madison, WI) in 10 L tubs containing a ½ strength Hoagland’s nutrient 

solution and watered daily using DI water (Hoagland’s #2 solution; Hoagland and Arnon, 

1950). Treatments included: 1) white LED for 37 d; 2) 5% B/95% R for 37 d; 3) 20% B 

80%/R for 37 d; 4) 20% B/80% R for 25 d; 5) 20% B/80% R for 20 d; 6) 20% R/80% B for 

15 d Kale were harvested after 37 days. The phytonutritional concentrations as well as 

the morphology of hydroponically grown kale plants were significantly impacted by LED 

treatment. LED treatments with more blue light had significantly shorter plants, lower 

Xanthophyll pigment concentrations in shoot tissue and greater root dry mass (DM) as 

compared to all other LED treatments. Results from this thesis may give producers who 

grow specialty leafy greens or transplants in controlled environments valuable 

information on the interactions between LED treatment and plant growth and nutrition.   
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3. 1 Introduction 

The light environment influences critical developmental and phytochemical 

pathways in plants. Specialized pigment-proteins called photoreceptors are able to 

perceive incoming solar radiation to signal developmentally appropriate 

photomorphogenic responses to help plants adapt to changes in their light environment 

(Kong and Okajima, 2016; Montgomery, 2016). These light signals can prompt a diverse 

range of developmental responses such as germination, cotyledon expansion, 

chloroplast development, stem elongation, root and leaf growth, along with senescence 

and flowering (Kim et al., 2005; Montgomery, 2016). Photoreceptors are able to sense 

the intensity of light and signal chloroplast movement and gene expression accordingly 

(Li et al., 2009). Cryptochromes and phototropins are blue and UV-A light 

photoreceptors, while phytochromes are red and far red light photoreceptors (Dai Yin 

and Hong Xuan, 2010).  

Plant responses to blue light from cryptochromes or phototropins include 

circadian rhythms, phototropism, stomatal opening, compact growth, and the 

intracellular positioning of chloroplasts to increase light absorption (Christie, 2014; 

Johkan et al., 2010; Lin, 2002; Wollaeger and Runkle, 2014). Green light can reverse the 

effects of blue light on stomatal opening (Frechilla et al., 2000). Plant responses to red 

light from phytochromes include shade avoidance, cell elongation, seed germination, 

reproductive development, and the development of a greater leaf surface area (Franklin 

and Quail, 2010; Lin, 2002; Pierik and de Wit, 2013). Light emitting diodes (LEDs) allow 
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for the specific targeting of wavelengths, high intensity, and the unique combination of 

blue, red, yellow, orange, ultra-violet (UV), and far-red light (Darko et al., 2014). Red 

light (650-665 nm) satisfies the peak absorption spectrums of chlorophyll and 

phytochromes, while blue light normalizes the developmental responses triggered by 

signals from phototropins and cryptochromes (Darko et al., 2014). Red and blue 

wavelengths provide targeted energy to pigments (chlorophyll and secondary pigments 

or receptors) involved in photosynthetic CO2 fixation and basic metabolism; therefore 

red and blue wavelengths have the greatest influence on plant growth and development 

(Bantis et al., 2016; Chen et al., 2014; Figueroa et al., 1995; Massa et al., 2015; Muneer 

et al., 2014).  

In addition to influencing plant growth and development, the light environment 

is able to signal photoreceptors to adjust the accumulation or allocation of different 

pigments and other photoprotective molecules in response to changes in light quality 

and intensity (Ouzounis et al., 2015). Carotenoids are associated with proteins in 

chloroplasts, where they act as accessory pigments to transfer a broader range of 

spectral energy to chlorophyll to promote photosynthesis (Cazzonelli, 2011; Khoo et al., 

2011). To ensure that incoming solar energy does not damage photosynthetic apparatus 

within chloroplasts, carotenoids quench triplet chlorophyll, release excess energy 

through non-photochemical quenching (NPQ) via the xanthophyll cycle, and scavenge 

radical oxygen species (ROS) in cooperation with other antioxidants like ascorbate and 

tocopherols (Cazzonelli, 2011).  These strong antioxidants protect both plants and 
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consumers by quenching free radicals that can damage cell membranes and proteins, 

aiding in the prevention of cancer as well as other chronic diseases (Bartwal et al., 2013; 

Slavin and Lloyd, 2012). Purposeful manipulation of the light environment to promote 

the accumulation of carotenoids and other antioxidants can increase the nutritional 

value of specialty leafy greens, benefiting consumer health (Kopsell et al., 2016; Liu, 

2013; Mozian, 2000).  

Vegetables within the Brassica genus often contain glucosinolates (GS) within 

shoot tissue (Wu et al., 2009). GS concentration is highly impacted by environmental 

conditions and can change depending on variety, climate, type of cultivation, type of 

tissue, developmental stage, and fertility (Johnson, 2002a; Navarro et al., 2011; Wu et 

al., 2009).  GS can be hydrolyzed by either myrosinase in Brassica or β-thioglucosidases 

in gut bacteria to form different breakdown products like indoles and isothiocyanates 

(ITC) and, to a lesser degree, nitriles (Navarro et al., 2011). GS can help protect against 

the development of certain cancers and other diseases primarily through their 

breakdown products, especially ITC (Fahey et al., 2012; Keck and Finley, 2004; Podsędek, 

2007). ITCs can induce apoptosis and immobilize the cell cycle, preventing and limiting 

carcinogenesis in animal models or in vitro (Johnson, 2002b; Villarreal-García and 

Jacobo-Velázquez, 2016; Wu et al., 2009; Zhang, 2010).  

Kale (Brassica oleracea var. acephala) is a member of the Cruciferous family, 

which is composed of distinctly unique plants that are used around the world in mild-

weathered regions for different economic purposes (Clark, 2007; Stewart and 
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McDougall, 2012; Warwick and Gugel, 2009). Cruciferous vegetables within the 

Brassicaceae family include varieties of broccoli (B. oleracea var. italica), cabbage (B. 

oleracea var. capitata), kale, Brussels sprout (B. oleracea var. gemmifera) and 

cauliflower (B. oleracea var. botrytis) (Podsędek, 2007). Kale contains a diversity of 

nutrients including flavonoids, glucosinolates, and carotenoids; many of which can be 

manipulated through changes in the environment (Bourgaud et al., 2011; Schmidt et al., 

2010; Taiz and Zeiger, 1998). Previous studies have looked at the impact of LED lighting 

within the early developmental stages of leafy vegetables, whereas this study examines 

the impact of LED lighting at a mature growth stage (Bian et al., 2015; Kim et al., 2005; 

Kobayashi et al., 2013; Lefsrud et al., 2008; Lin et al., 2013; Martineau et al., 2012). The 

objective of this study was to examine the impact of duration and light quality of 

narrow-band wavelength LEDs on the biomass, root and shoot morphology, and 

nutritional quality of hydroponically grown ‘Premier’ kale. 

3. 2 Materials and Methods 

Plant Production and Growing Conditions 

‘Premier’ kale (B. oleracea var. acephala; Johhny’s Selected Seeds, Winslow, ME) 

was hydroponically grown in Oasis® Horticubes® for 37 d after germination (Smithers-

Oasis Company, Kent, OH). The ‘Premier’ kale cultivar was selected due to its prostrate 

leaf angle and compact growth habit. Kale seeds were presoaked in deionized (DI) water 

for 24 h in the dark and then germinated in a low temperature refrigerated incubator 

(Thermal Fisher Scientific, Waltham, MA) at 24±1 °C for 72 h in the dark. The 
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germinated seeds were then transferred to growth chambers at 22±1 °C (Model E15; 

Conviron, Winnipeg, Manitoba, Canada). Three chambers divided into half sections to 

create a total of six chambers were used to match the number of light treatments 

(Figure 3.1).  

They were given a 7 d acclimation period within the growth chambers in solid 

bottom trays (26 x 52 x 6 cm) filled with DI water. Plants in the treatment 1 group were 

acclimated under white LEDs, while all other treatments were acclimated under 5% Blue 

(470 nm) 95% Red (627 nm) LED panels at an average light intensity of 250±10 µmol·m-

2·s-1 (Orbital Technologies, Madison, WI). After the 7 d acclimation period during which 

they were watered daily using DI water, seedlings were then transplanted into 10 L tubs 

containing a ½ strength Hoagland’s nutrient solution and watered daily using DI water 

(Hoagland’s #2 solution; Hoagland and Arnon, 1950). After transplanting, plants were 

grown using a 37 d production cycle under different LED light treatments. Except for the 

white LED treatment, all other treatments were exposed to 5% Blue/95% Red LED 

before the individual treatment was applied to the kale at their respective treatment 

duration time.  

Treatments included: 1) white LED for 37 d; 2) 5% B/95% R for 37 d; 3) 20% B 

80%/R for 37 d; 4) 20% B/80% R for 25 d; 5) 20% B/80% R for 20 d; 6) 20% R/80% B for 

15 d (Figure 3.1). All LED treatments had an intensity of 250±10 µmol·m-2·s-1; 

percentages indicate the contribution of blue (B) and red (R) light to total intensity. A 

randomized, complete block design was used (Figure 3.1). Plants were grown for a total 



www.manaraa.com

 

107 
 

of 40 d and harvested 30 d after transplanting.  Plant height (cm), leaf length and width 

(cm), shoot fresh mass (FW; g), root fresh mass (FM; g), shoot dry mass (DM; g), and 

root dry mass (DM; g) data were collected post-harvest. Microgreen shoot tissue was 

analyzed for carbohydrate, mineral, and carotenoid concentrations.  Fresh shoot tissue 

samples were stored at -20 °C (±1 °C) for later use.  

Shoot Tissue Pigment Extraction 

Kale fresh tissue was freeze-dried (model 6 L FreeZone; LabConCo, Kansas City, 

MO) at -25 ˚C. The procedure from Kopsell et al. (2012) was used for pigment extraction 

from freeze-dried tissue. A 0.1 g (± 0.05 g) sample of frozen tissue was weighed out into 

glass culture tubes (16 x 100 mm) and then rehydrated with 0.8 mL of ultrapure H2O for 

10 min, and then 2.5 mL of tetrahydrofuran (THF) was added to the sample. Following 

rehydration, 0.8 mL of the internal standard ethyl-β-8’-apo-carotenoate (Sigma-Aldrich, 

St. Louis, MO) was added to measure the efficiency of the extraction process. The 

sample was homogenized using a drill press set at 540 rpm in a Potter-Elvehjem (Kontes, 

Vineland, NJ) tissue grinding tube using twenty insertions. After homogenization, the 

sample was placed in a centrifuge for 5 min at 500 gn. The supernatant was extracted 

and the sample pellet was then re-suspended in 2 mL THF and homogenized with the 

same extraction technique for a total of three extractions until the supernatant was 

colorless. The collected total supernatant was then reduced to 0.5 mL using nitrogen gas 

(N-EVAP 111; Organomation Inc., Berlin, MA). Acetone was added to the concentrated 

supernatant bringing it up to the final volume of 5 mL. A 2 mL portion was filtered 
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through a 0.2 μm polytetrafluoroethylene (PTFE) filter (Model Econofilter PTFE 25/20, 

Agilent Technologies, Wilmington, DE) using a 5-mL syringe (Becton, Dickinson and 

Company, Franklin Lakes, NJ) and collected into brown crimp-top vials to prepare the 

extracted solution for high-performance liquid chromatography (HPLC) analysis.  

Shoot Tissue Pigment HPLC Analysis 

Pigments were separated using an Agilent 1200 series HPLC unit with a 

photodiode array detector (Agilent Technologies, Palo Alto, CA). Separation of 

chemically similar pigments was successfully completed using an analytical scale (4.6 

mm i.d. x 250 mm) 5 μm, 200 Å polymeric RP-C30 column (ProntoSIL, MAC-MOD 

Analytical Inc., Chadds Ford, PA). The thermostatted compartment column maintained a 

temperature of 30 ˚C. It was equipped with a 5 μm guard cartridge (4.0 mm i.d. x 10 

mm) and holder (ProntoSIL). All separations were completed isocratically using a binary 

mobile phase of 11% methyl tert-butyl ether (MTBE), 88.99% MeOH, and 0.01% 

triethylamine (TEA) (v/v/v). Eluted compounds from a 10 μL injection were detected 

pigments at 453 (carotenoids and internal standard), 652 [chlorophyll a (Chl a)], and 665 

[chlorophyll b (Chl b)] nm. Data were collected, recorded, and integrated using 

ChemStation Software (Agilent Technologies). Peak assignments for pigments were 

performed by matching retention times and line spectra obtained from the photodiode 

array detection using the external standards [antheraxanthin (ANT), 𝛽𝛽-carotene (BC), 

Chl a, Chl b, lutein (LUT), neoxanthin (NEO), violaxanthin (VIO), zeaxanthin (ZEA) from 

ChromaDex Inc., Irvine, CA].  
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Shoot Tissue Glucosinolate Extraction  

The procedure from Charron et al. (2004) was used for glucosinolate extraction 

from freeze-dried tissue and analysis. A 0.2 g (± 0.05 g) sample of freeze dried tissue was 

combined with 1 mL benzyl GS solution (1mM), to act as the internal standard. 2.0 mL 

MeOH and 0.1 mL barium-lead acetate (0.6 M) were then added to the sample in a 

culture tube (16 x 100 mm) and shaken at 60 rpm for 60 min. Each tube was then 

centrifuged at 2000 gn for 20 min at 22 °C. A 0.5 mL aliquot of the supernatant was then 

be combined with a 1 mL column that consisted of 0.3 mL DEAE Sephadex A-25 (Sigma-

Aldrich). The sample was then desulfated using the procedure by Raney and McGregor 

(1990).  

Shoot Tissue Glucosinolate HPLC Analysis 

Extracted desulfoglucosinolates were separated using an HPLC unit with a 

photodiode array detector (1100 series, Agilent Technologies), using a reverse-phase 

250 x 4.6 mm i.d., 5 μm Luna C18 column (Phenomenex Inc., Torrance, CA) at a 

wavelength of 230 nm. The temperature of the column was set at 40 ˚C with a flow rate 

of 1 mL min-1. The gradient elution parameters were set to 100% water for 1 min, 

followed by a 15 min linear gradient set to 75% water: 25% acetonitrile. Solvent levels 

were then held constant for 5 min and then returned to 100% water for the final 5 min. 

Identification of desulfoglucosinolates took place using a comparison of retention times 

of authentic standards or previously reported results (Hansen et al., 1995; Kushad et al., 

1999). 
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Soluble Sugars Extraction  

Nonstructural water soluble carbohydrates were extracted from kale tissues 

based on the methods of Muir et al. (2009) and Thavarajah et al. (2016), with slight 

modifications.  A 0.1 g sub-sample of ground, freeze-dried tissue was extracted in a 15 

mL test tube by adding 2 mL of RO water which was heated to 80 °C.  Samples were 

shaken for 15 min at 300 rpm then vortexed. The tubes were centrifuged at 4400 rpm 

for 20 min and then a 1.0 mL aliquot of the supernatant was transferred into a new 15 

mL test tube.  Samples were reduced to dryness under a stream of N gas.  Extracts were 

rehydrated to 2.5 ml with RO water. Samples were put through a 0.2 μm filter and 

collected in a 2 mL vial for high performance liquid chromatography (HPLC) analysis.  

Soluble Sugars HPLC Analysis 

Separation parameters and carbohydrate quantification were done using an 

HPLC unit (Agilent 1200 series; Agilent Technologies, Santa Clara, CA) with an 

evaporative light scattering (ELS) detector (1290 Infinity II; Agilent Technologies).  The 

ELS detector had an N gas flow rate of 1.6 L⋅min-1, evaporative gas temperature at 80 °C, 

and a nebulizer gas temperature at 50 °C.  Chromatographic separations were achieved 

using a Rezex RCM Monosaccharide Ca+2 (8%) 300 x 7.8mm i.d., 8 µm analytical scale 

column (Phenomenex, Torrance, CA), which allowed for effective separation of 

chemically similar carbohydrate compounds.  The column was equipped with a Carbo-Ca 

4 x 3.0 mm i.d. security guard cartridge and holder (Phenomenex), and was maintained 

at 80 °C using a heated column compartment.  All separations were achieved 
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isocratically using a mobile phase of 100% RO water.  The flow rate was set at 0.6 

mL⋅min-1, with a run time of 20 min, followed by a 2 min equilibration prior to the next 

injection.  Eluted compounds from a 5.0 µL injection were detected and the data 

collected, recorded, and integrated using ChemStation Software (Agilent Technologies).  

Peak assignment for individual carbohydrates were performed by comparing retention 

times from the ELS detector using external standards of fructose, glucose, and sucrose 

(Sigma-Aldrich, St. Louis, MO).  

Statistical Analyses 

Data sets were analyzed by GLM procedure using statistical software (version 

9.4; SAS Institute, Cary, NC).  Treatment means were separated by least significant 

difference (LSD) at α=0.05. Kale shoot tissue pigments, shoot tissue glucosinolates, 

mineral elements, and carbohydrate data are presented on a DM basis. 

3. 3 Results  

Hydroponically Grown Kale Root Morphology 

 Hydroponic kale root tissue FM was not influenced by LED treatments (P=0.13; 

F=1.85), while the root tissue DM was different among LED treatments (P=0.02; F=3.24). 

The 80%B/20%R (20 d) LED treatment had the highest root tissue FM, while the 

5%B/95%R (37 d) LED treatment had the lowest (Table 3.1; Figure 3.2). All 80%B/20%R 

LED treatments had a higher root tissue DM as compared to the 5%B /95%R (37 d) LED 

treatment and the white (37 d) LED (Table 3.1; Figure 3.3). Overall, the 80%B/20%R (20 
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d) LED treatment had the highest root tissue DM, while the 5%B/95%R (37 d) LED 

treatment had the lowest mean root tissue DM (Table 3.1; Figure 3.3).  

 Hydroponically Grown Kale Shoot Morphology 

 The average shoot FM did not differ between LED treatments (P=0.49; F=0.88) 

(Table 3.2; Figure 3.4).  Plant height was influenced by LED treatment (P=0.01; F=14.27) 

(Table 3.2; Figure 3.5). The white (37 d) LED treatment had the tallest plants compared 

to all other LED treatments, while the 80%B/20%R (25 d) LED treatment had the 

shortest plants (Table 3.2; Figure 3.5). All plants treated with blue narrow band 

wavelength LED were shorter compared to the white (37 d) and 5%B/95%R LED 

treatments respectively (Table 3.2; Figure 3.5). There was no difference in leaf length 

(P=0.79; F=0.48), but leaf width was impacted by LED treatment (P=0.03; F=2.51) (Table 

3.2; Figure 3.6). The 5%B/95%R (37 d) LED treatments had the greatest leaf width, while 

the white (37 d) LED treatment has the smallest leaf width (Table 3.2, Figure 3.6).  

Chlorophyll Fluorescence  

Chlorophyll minimum fluorescence (Fo) (P=0.01; F=5.71), variable fluorescence 

(Fv) (P=0.01; F=13.60), and chlorophyll maximum fluorescence (Fm) (P=0.01; F=12.76), 

were all influenced by LED treatment, while maximum quantum yield (Fv/Fm) (P=0.06; 

F=2.20) was not (Table 3.3). The white (37 d) LED treatment had the highest Fo and the 

80%B/20%R (20 d) LED treatment had the lowest Fo (Table 3.3). The 80%B/20%R (37 d) 

LED treatment had the highest Fv and Fm, while the 80%B/20%R (20 d) LED treatment 

had the lowest Fv and Fm (Table 3.3). 
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Shoot Chlorophyll and Pigment Concentrations 

 Chlorophyll a (Chl a) (P=0.92; F=0.29), Chl b (Chl b) (P=0.99; F=0.11), and total Chl 

(P=0.95; F=0.23) concentrations in kale shoot tissue did not significantly differ among 

LED treatments (Table 3.4). Total carotenoid concentrations within kale shoot tissue 

were not altered by LED treatment (P=0.62; F=0.72) (Table 3.5). 𝛽𝛽-carotene (BC) 

(P=0.96; F=0.21), lutein (LUT) (P=0.72; F=0.57), neoxanthin (NEO) (P=0.12; F=1.91), and 

violaxanthin (VIO) (P=0.59; F=0.75) concentrations within kale shoot tissue were not 

influenced by LED treatment (Table 3.5). Zeaxanthin (ZEA) (P=0.01; F=13.19) and 

antheraxanthin (ANT) (P=0.01; F=11.64) concentrations within kale shoot tissue were 

different among LED treatments (Table 3.5). 

 The white (37 d) LED treatment had the highest ZEA and ANT concentrations in 

shoot tissue (Table 3.5). The 80%B/20%R (20 d) LED treatment had the lowest 

concentrations of ZEA and ANT within shoot tissue (Table 3.5). The 5%B/95%R (37 d), 

80%B/20%R (20 d), and 80%B/20%R (15 d) had lower ANT concentrations in shoot tissue 

as compared to all other LED treatments (Table 3.5). The 80%B/20%R (37 d) had the 

highest concentration of NEO, while the 80%B/20%R (20 d) had the lowest 

concentration of NEO in shoot tissue (Table 3.5). The shoot tissue concentrations of 

pigments involved in the Xanthophyll Cycle (ZEA+ANT/ZEA+ANT+VIO) were significantly 

altered by LED treatment (P=0.02; F=3.13) (Table 3.6; Figure 3.7). The white (37 d) LED 

treatment had the highest concentration of Xanthophyll Cycle pigments compared to all 
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other LED treatments, while the 80%B/20%R (15 d) had the lowest (Table 3.6; Figure 

3.7).        

Shoot Glucosinolate Concentrations 

Iberin (P=0.45; F=0.98), Progoitrin (P=0.84; F=0.41), Sinigrin (P=0.43; F=1.02), 

Erucin (P=0.55; F=0.81), Indole glucosinolates (P=0.33; F=1.20) and Aliphatic 

glucosinolates (P=0.72; F=0.57) were not significantly influenced by LED treatments 

(Table 3.7). Total GS concentrations (P=0.70; F=0.61) were not significantly influenced by 

LED treatment (Table 3.7). While there were no significant differences in GS 

concentrations among LED light treatments, total GS concentrations within kale shoot 

tissue were increased under the 5%B/95%R (37 d) LED treatment as compared to all 

other treatments (Table 3.7; Figure 3.8). 

Shoot Non-Structural, Water-Soluble Carbohydrate Concentrations  

Sucrose (P=0.81; F=0.45) and glucose (P=0.12; F=1.94) concentrations within 

hydroponic kale shoot tissue did not differ among LED treatments (Table 3.8). Fructose 

concentration in hydroponic kale shoot tissue was influenced by LED treatment (P=0.03; 

F=3.04) (Table 3.8; Figure 3.9). The 5%B/95%R (37 d) LED treatment had the lowest 

fructose concentration compared to all other LED treatments (Table 3.8; Figure 3.9).  

3.4 Discussion 

Root and Shoot Morphology and LED Treatment 

 While the root and shoot FM were not different among LED treatments, the root 

DM, plant height, and leaf width of the hydroponically grown kale were significantly 
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influenced by the LED treatments. Although not significant, the 5%B/95%R (37 d) LED 

treatment had decreased root and shoot FM compared to all other LED treatments. 

Furthermore, the 5%B/95%R (37 d) LED treatment also had the lowest root DM. The 

root DM for kale was increased for all blue LED treatments as compared to the red and 

white LED treatments and is consistent with the results of other studies that use 

hydroponically grown lettuce (Johkan et al., 2010; Kobayashi et al., 2013; Martineau et 

al., 2012). There was greater metabolite partitioning into roots under the blue LED 

treatments, causing a variation in root DM which is consistent with other studies 

(Samuolienė et al., 2010; Tripathy and Brown, 1995). Blue light, especially within the UV 

spectrum, triggers drought avoidance strategies via PHOT1 (phototropin-1), which 

promotes the vertical growth of roots away from the soil surface (Galen et al., 2007; 

Yokawa et al., 2014). Blue light causes greater biomass accumulation, promotes 

vegetative growth, and delays leaf senescence which in turn could lead to greater 

metabolite partitioning to roots (Hogewoning et al., 2010; Johkan et al., 2010; Wang et 

al., 2016).  

Kale height was significantly decreased under all blue LED treatments as 

compared to the white and red LED treatments, with the shortest plants under the 

80%B/20%R (25 d) LED treatment. Compact growth or reduced height is common 

among plants exposed to blue light (Johkan et al., 2010). Blue light, which is intercepted 

via cryptochrome photoreceptors in shoot tissue, signals Cryptochrome Circadian Clock 

1 (CRY1) to upregulate gene expression within the Gibberellic Acid (GA) biosynthetic 
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pathway, and as a result blue light causes compact growth and reduced stem elongation 

in Brassica spp. (Chatterjee et al., 2006; Olszewski et al., 2002).  While leaf length was 

not significantly different, leaf width was influenced by the LED treatment.  Leaf width 

was increased under the blue LED treatments as compared to the white LED treatment. 

The effect of blue light on leaf morphology and area is dependent on age, species and 

cultivar. The increase in leaf width would aid in more efficient light harvesting to 

compensate for the decrease in chlorophyll shoot content under certain blue light 

treatments (Lin et al., 2013; Wang et al., 2015).  

 Shoot Pigments and LED Treatment 

 Chlorophyll has maximum energy absorption within the red and blue 

wavelengths, with red light having the highest quantum yield (Hogewoning et al., 2012; 

McCree, 1972). Chlorophylls can move and concentrations can fluctuate based on 

duration and light quality (Kopsell et al., 2016; Lefsrud et al., 2008; Johkan et al., 2010). 

In kale shoot tissue, the Chl a, Chl b, and Total Chl concentrations were not significantly 

different between LED treatments. While not significant, total Chl concentration was 

increased under the 80%B/20%R (37 d) LED treatment. Nonetheless, the blue LED 

treatments with reduced duration had decreased levels of chlorophyll. Studies have 

reported an increase in chlorophyll content under blue LED in lettuce and Chinese 

cabbage (B. campestris) (Johkan et al., 2010; Olle and Viršile, 2013; Wang, 2016). In 

contrast, other studies have reported a decrease in chlorophyll concentration in kale 

and sprouting broccoli (B. oleacea var. italica) under blue LED treatment (Kopsell and 
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Sams, 2013; Lefsrud et al., 2008). Blue narrow-band LED wavelengths could alter 

chlorophyll concentrations as the plants adjust chlorophyll quality and content to match 

the reduced photosynthetic efficiency of the blue light environment.    

 Carotenoid concentrations varied with LED treatment in kale shoot tissue. 

Previous studies have reported a positive relationship between blue LED treatments and 

increased carotenoid concentration in leafy greens (Bian et al., 2015; Johkan et al., 

2010; Lefsrud et al., 2008, Kopsell and Sams, 2013; Son and Oh, 2013). These findings 

are consistent with the 80%B/20%R (15 d) LED treatment in the current study which had 

the highest total carotenoid concentration as compared to all other treatments. This 

suggests that a blue LED light treatment approximately 15 d before harvest may 

improve carotenoid concentrations within shoot tissue. While BC and LUT 

concentrations within kale shoot tissue were not significantly different between LED 

treatments, the 5%B/95%R (37 d) LED treatment had the highest BC and LUT 

concentrations which is consistent with the findings of other studies (Wu et al., 2007; 

Lefsrud et al., 2008). 

  Lutein and BC are important in preventing cataracts and other eye diseases as 

well as lung cancer and cardiovascular disease (Bian et al., 2015). Increasing the innate 

concentrations of LUT and BC within kale shoot tissue through the use of a 5%B/95%R 

LED treatment could yield added nutritional value which in turn could benefit consumer 

health. All blue LED treatments had lower concentrations of Xanthophyll Cycle 

(ZEA+ANT+VIO) pigments as compared to all other treatments. Xanthophylls are 
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responsible for non-photochemical quenching (NPQ) of excess energy within light 

harvesting antennae proteins to prevent the formation of surplus reactive oxygen 

species (ROS), which can ultimately lead to PSII damage and photoinhibition (Demmig-

Adams and Adams, 1996; Jahns and Holzwarth, 2012; Latowski et al., 2011). Thus, the 

blue LED treatments did not contribute additional stress to PSII light harvesting 

complexes, promoting effective photosynthetic energy collection.  

 Chlorophyll Fluorescence and LED Treatment 

 Chlorophyll minimum fluorescence (Fo), variable fluorescence (Fv), and 

chlorophyll maximum fluorescence (Fm) values decreased with decreasing duration of 

the blue LED treatment. Since Fo, when all PSII reaction centers are theoretically open, 

suggests that kale plants were not photosynthetically stressed under the blue LED 

treatments (Hazrati et al., 2016; Kooten and Snel, 1990). Maximum quantum yield 

(Fv/Fm) was consistent among LED treatments. The Fv/Fm values for all LED treatments 

are within the previous reported ranges for ideal levels for most plant species which is 

typically 0.83 (Allen et al., 1997; Hogewoning et al., 2012; Johnson et al., 1993; Maxwell 

and Johnson, 2000; Son and Oh, 2013). This suggests that the blue LED pre-harvest 

treatments did not place additional stress on plant photosynthetic activity or limit non-

photochemical energy dissipation (Demmig-Adams et al., 1996; Maxwell and Johnson, 

2000).  With reduced stress placed on photosynthetic systems, plants are better able to 

carry out photosynthetic reactions and increase metabolic activity.  
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 Glucosinolate Concentrations and LED Treatment   

 Glucosinolates are S-containing compounds that are characteristically produced 

by the Brassica and Allium families (Tsao et al., 2002).  When plants are wounded by 

herbivory or pathogens, GS are released into the surrounding air and plant tissue when 

they react with myrosinase enzymes which are differentially compartmentalized within 

specialized vacuoles in plant cells (Charron et al., 2005; Halkier and Gershenzon, 2006; 

Wittstock and Burow, 2010; Figure 3.10). Glucosinolates have been used effectively as 

soil bio-fumigant agents in novel applications (Tsao et al., 2002). Glucosinolates are 

influenced by environmental and genetic factors. For example, Indole GS are influenced 

by environmental conditions, while aliphatic GS are influenced via genetic factors (Keck 

and Finley, 2004). Glucosinolates act as important anti-carcinogenic agents within the 

human diet, reducing the risk of developing certain cancers like lung, prostate or colon 

cancers (Johnson, 2002b; Keck and Finley, 2004; Navarro et al., 2011). 

 As a group, kale has a varied GS profile which can be attributed to the diverse 

genetic background of this group (Carlson et al., 1987; Traka and Mithen, 2009). Iberin, 

Sinigrin, Progoitrin, Erucin, Indole, and Aliphatic GS were identified in hydroponic kale 

shoot tissue, which is consistent with other studies (Carlson et al., 1987; Charron et al., 

2005; Nilsson et al., 2006). The 5%B/95%R (37 d) LED treatment had the highest total, 

Indole, and Aliphatic GS concentrations in kale shoot tissue as compared to all other 

treatments. There have been contrasting reports on light and GS concentrations. 

Previous studies have reported a null effect of LED treatment on GS content in kale baby 
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greens, while others have found blue LED increased GS in broccoli microgreens (Lefsrud 

et al., 2008; Kopsell and Sams, 2013). These results suggest using a 5%B/95%R LED 

treatment can cause an increase in GS concentrations in kale. Differences in 

developmental stage and cultivar could contribute to differences in light treatment 

effect.   

 Non-Structural, Water-Soluble Carbohydrates and LED Treatment 

 Light duration and quality is able to influence soluble carbohydrate content in 

plants by altering CO2 assimilation (Eckstein et al., 2012; Li et al., 2010; Roitsch, 1999; 

Rosa et al., 2009; Samuolienė et al., 2010). Sucrose, glucose and fructose are the major 

transportable sugars plants shuttle to sink tissues like mature leaves, flowers, and seeds 

via phloem tissue (Taiz and Zeiger, 1998). Sucrose can be broken down to form fructose 

and glucose which are involved in various catabolic reactions (Lemoine et al., 2013; Rosa 

et al., 2009; Taiz and Zeiger, 1998). Fructose is involved in osmoprotection and 

secondary metabolite synthesis (Bogdanović et al., 2008; Rosa et al., 2009). Glucose 

levels can be used to signal ROS concentrations and stress (Bogdanović et al., 2008; 

Koch, 2004). Glucose, sucrose, and fructose are the main nonstructural, water soluble 

carbohydrates found in brassica shoot tissue (Ayaz et al., 2006; King et al., 1997). 

  Kale shoot tissue with a lower concentration of sucrose and a higher 

concentration of fructose is consistent with other studies (Ayaz et al., 2006; Nilsson et 

al., 2006). While sucrose and glucose concentrations did not differ between LED 

treatments, fructose concentrations were influenced by LED treatment. The 5%B/95%R 
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(37 d) LED treatment had the lowest fructose concentration as compared to all other 

LED treatments. All blue LED treatments had overall increased levels of sucrose, glucose, 

and fructose compared to all other treatments, which is consistent with other studies 

(Terfa et al., 2012). Increasing soluble sugar levels in plants can lead to an increased 

metabolic activity and the generation of amino acids, cellulose, and lipids (Eckstein et 

al., 2012). Soluble sugars are also involved in the generation and detoxification 

pathways for ROS, which are produced in response to stress (Couée et al., 2005). 

Elevated levels of soluble sugars within kale shoot tissue suggest increases 

photosynthetic activity or source to sink partitioning under the blue LED treatments.  
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Figure 3.1 Randomized complete block (RCB) design for hydroponic ‘Premier’ kale LED study; three growth chambers 
which were divided into six half sections with two blocks per treatment. 
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LED 
treatment 

root FM 
(g∙plant) 

root DM 
(g∙plant-1) 

white   
(37 days) 

29.72  1.65 AB 

5%B 95%R  
(37 days) 

19.98  1.29 B 

20%B 80%R  
(37 days) 

33.44  2.07 A 

20%B 80%R  
(25 days) 

29.61  2.09 A 

20%B 80%R  
(20 days) 

36.09  2.14 A 

20%B 80%R 
 (15 days) 

31.77  1.84 A 

LSD ∝ = 0.5 NS 0.53 

Table 3.1 Impact of LED treatments on root tissue fresh (FM; g∙plant-1) and dry 
mass (DM; g∙plant-1) of hydroponically grown ‘Premier’ kale (B. oleracea var. 
Acephala). a 
 
 

a mean values represent two replications of six plants per block treatment for 
each of the three complete experimental runs. Means with the same uppercase 
letter are not statistically different (𝛼𝛼 =0.05). All LED treatments have an 
intensity of 250±10 μmol∙m−2∙s−1; percentages indicate the contribution of red (R) 
and blue (B) light to total intensity.  
NS = not significant  
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Figure 3.2 The influence of LED treatment on root fresh mass (g∙plant-1) 
for hydroponically grown kale.   
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Figure 3.3 The influence of LED treatment on root tissue dry mass 
(g∙plant-1) for hydroponically grown kale. Means with the same 
uppercase letter are not statistically different (𝛼𝛼 =0.05). 
 
 

Dry Mass of Hydroponic Kale Root Tissue 
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LED 
treatment 

shoot FM 
(g∙plant-1) 

plant height 
(cm) 

leaf length 
(cm) 

leaf 
width 
(cm) 

white   
(37 days) 

45.61  25.10 A 14.15  10.92 B 

5%B 95%R  
(37 days) 

37.86  22.83 B 13.94  12.03 A 

20%B 
80%R  
(37 days) 

42.76  19.61 C 14.25  11.47 AB 

20%B 
80%R  
(25 days) 

41.79  19.04 C 14.03  11.96 A 

20%B 
80%R  
(20 days) 

44.25  19.58 C 13.64 11.47 AB 

20%B 
80%R 
 (15 days) 

41.15  21.03 C 14.33  12.33 A 

LSD ∝ = 0.5 NS 1.74 NS 0.89 

Table 3.2 Influence of LED treatments on shoot fresh mass (g∙plant-1), plant 
height (cm), and leaf length and width (cm) of hydroponically grown ‘Premier’ 
kale (B. oleracea var. Acephala). a 

  

 
 

a mean values represent two replications of six plants per block treatment for 
each of the three complete experimental runs. Means with the same 
uppercase letter are not statistically different (𝛼𝛼 =0.05). All LED treatments 
have an intensity of 250±10 μmol∙m−2∙s−1; percentages indicate the 
contribution of red (R) and blue (B) light to total intensity.  
NS = not significant  
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LED 
treatment Fo Fv Fm Fv/Fm 

white   
(37 days) 

52.69 A 201.28 AB 253.97 A 0.79  

5%B 95%R  
(37 days) 

47.25 B 175.06 D 222.31 CD 0.79  

20%B 80%R  
(37 days) 

52.22 A 207.44 A 259.61 A 0.80  

20%B 80%R  
(25 days) 

48.47 B 186.75 C 235.22 BC 0.79  

20%B 80%R  
(20 days) 

45.11 B 172.06 D 217.17 D 0.79  

20%B 80%R 
 (15 days) 

46.92 B 191.22 BC 238.28 B 0.80  

LSD ∝ = 0.5 3.56 10.60 13.11 NS 

Table 3.3 Impact of LED treatments on chlorophyll minimum fluorescence (Fo), 
variable fluorescence (Fv), chlorophyll maximum fluorescence (Fm), and 
maximum quantum yield (Fv/Fm) of hydroponically grown ‘Premier’ kale (B. 
oleracea var. Acephala). a  
  

 
 

a mean values represent two replications of six plants per block treatment for 
each of the three complete experimental runs. Means with the same uppercase 
letter are not statistically different (𝛼𝛼 =0.05). All LED treatments have an 
intensity of 250±10 μmol∙m−2∙s−1; percentages indicate the contribution of red (R) 
and blue (B) light to total intensity. 
NS = not significant 
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LED 
treatment Chl a Chl b Total Chl a to b ratio 

mg∙g-1 DM 
white   
(37 days) 12.62 3.68 16.30 3.42 

5%B 95%R  
(37 days) 13.12 3.68 16.80 3.56 

20%B 80%R  
(37 days) 13.71 3.85 17.57 3.56 

20%B 80%R  
(25 days) 12.99 3.65 16.64 3.56 

20%B 80%R  
(20 days) 11.77 3.52 15.28 3.34 

20%B 80%R 
 (15 days) 11.76 3.73 15.49 3.15 

LSD ∝ = 0.5 NS NS NS  

Table 3.4 Influence of LED treatment on shoot tissue chlorophyll concentrations 
(mg∙g-1 DM) in hydroponically grown ‘Premier’ kale (B. oleracea var. Acephala). a 
 
 

a mean values represent two replications of six plants per block treatment for 
each of the three complete experimental runs. Means with the same uppercase 
letter are not statistically different (𝛼𝛼 =0.05). All LED treatments have an 
intensity of 250±10 μmol∙m−2∙s−1; percentages indicate the contribution of red (R) 
and blue (B) light to total intensity. 
NS = not significant 
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Figure 3.4 The influence of LED treatment on shoot fresh mass 
(g∙plant-1) for hydroponically grown kale.   
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Figure 3.5 The influence of LED treatment on plant height (cm) for 
hydroponically grown kale.  Means with the same uppercase letter 
are not statistically different (𝛼𝛼 =0.05). 
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Figure 3.6 The influence of LED treatment on leaf width (cm) for 
hydroponically grown kale.  Means with the same uppercase letter are 
not statistically different (𝛼𝛼 =0.05). 
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LED 
treatment 𝜷𝜷-carotene Zeaxanthin Lutein Antheraxanthin Neoxanthin Violaxanthin 

Total 
Carotenoids 

mg∙g-1 DM 

White  
(37 days) 

0.78 0.029 A 1.37 0.09 A 0.67 A 0.43 3.38 

5%B 95%R 
(37 days) 

0.82 0.007 B 1.45 0.03 B 0.57 AB 0.47 3.35 

20%B 80%R 
(37 days) 

0.78 0.005 B 1.36 0.04 B 0.68 A 0.41 3.26 

20%B 80%R 
(25 days) 

0.76 0.005 B 1.32 0.04 B 0.50 AB 0.52 3.14 

20%B 80%R 
(20 days) 

0.70 0.003 B 1.23 0.03 B 0.44 B 0.43 2.84 

20%B 80%R 
(15 days) 

0.79 0.004 B 1.40 0.03 B 0.59 AB 0.73 3.55 

LSD ∝=0.5 NS 0.008 NS 0.02 0.20 NS NS 

Table 3.5 Influence of LED treatment on shoot tissue carotenoid pigment concentrations (mg∙g-1 DM) in hydroponically 
grown ‘Premier’ kale (B. oleracea var. Acephala). a 
 

 
 

a mean values represent two replications of six plants per block treatment for each of the three complete experimental 
runs. Means with the same uppercase letter are not statistically different (𝛼𝛼 =0.05). All LED treatments have an intensity 
of 250±10 μmol∙m−2∙s−1; percentages indicate the contribution of red (R) and blue (B) light to total intensity.  NS = not 
significant 
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LED 
treatment ZEA+ANT+VIO ZEA+ANT/ZEA+ANT+VIO 

mg∙g-1 DM 
white   
(37 days) 

0.55 0.22 A 

5%B 95%R  
(37 days) 

0.52 0.14 AB 

20%B 80%R  
(37 days) 

0.46 0.10 B 

20%B 80%R  
(25 days) 

0.56 0.11 B 

20%B 80%R  
(20 days) 

0.46 0.08 B 

20%B 80%R 
 (15 days) 

0.77 0.07 B 

LSD ∝ = 0.5 NS 0.09 

Table 3.6 Influence of LED treatment on Xanthophyll 
Cycle shoot tissue pigment concentrations (mg∙g-1 DM) 
in hydroponically grown ‘Premier’ kale (B. oleracea var. 
Acephala). a 
  

 
 

 a mean values represent two replications of six plants per 
block treatment for each of the three complete 
experimental runs. Means with the same uppercase letter 
are not statistically different (𝛼𝛼 =0.05). All LED treatments 
have an intensity of 250±10 μmol∙m−2∙s−1; percentages 
indicate the contribution of red (R) and blue (B) light to 
total intensity. 
NS = not significant 
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Figure 3.7 The influence of LED treatment on Xanthophyll Cycle pigment 
(ZEA+ANT/ZEA+ANT+VIO) concentrations (mg∙g-1 DM) in kale shoot tissue.  
Means with the same uppercase letter are not statistically different (𝛼𝛼 
=0.05). 
 
 

Xanthophyll Cycle Pigments In Kale Shoot Tissue 
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LED 
treatment Iberin Sinigrin Progoitrin Erucin 

Aliphatic 
glucosinolates 

Indole 
glucosinolates 

Total 
Glucosinolates 

mg∙g-1 DM 

white 
(37 days) 

0.54 0.09 1.05 3.09 4.76 0.18 4.94 

5%B 95%R 
(37 days) 

0.77 BD 0.8 4.70 6.30 0.40 6.70 

20%B 80%R 
(37 days) 

1.28 0.20 1.27 3.40 6.15 0.14 6.29 

20%B 80%R 
(25 days) 

0.38 0.14 1.74 3.52 5.78 0.07 5.84 

20%B 80%R 
(20 days) 

0.15 BD 1.30 2.31 3.76 0.11 3.88 

20%B 80%R 
(15 days) 

BD BD 1.69 2.96 4.66 0.36 5.02 

LSD ∝=0.5 NS NS NS NS NS NS NS 

 Table 3.7 Influence of LED treatment on shoot tissue glucosinolate concentrations (mg∙g-1 DM) in hydroponically grown 
‘Premier’ kale (B. oleracea var. Acephala). a 
 

 
 

a mean values represent two replications of six plants per block treatment for each of the three complete experimental 
runs. Means with the same uppercase letter are not statistically different (𝛼𝛼 =0.05). All LED treatments have an intensity 
of 250±10 μmol∙m−2∙s−1; percentages indicate the contribution of red (R) and blue (B) light to total intensity.  
NS = not significant 
BD = below detection 
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Figure 3.8 The influence of LED treatment on total glucosinolate 
concentration (mg∙g-1 DM) in hydroponic kale shoot tissue.   
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LED 
treatment sucrose glucose fructose 

mg∙g-1 DM 
white   
(37 days) 0.103 12.42 12.13 A 

5%B 95%R  
(37 days) 0.102 11.66 6.83 B 

20%B 80%R  
(37 days) 0.102 13.61 12.47 A 

20%B 80%R  
(25 days) 0.103 14.51 12.66 A 

20%B 80%R  
(20 days) 0.103 18.26 13.60 A 

20%B 80%R 
 (15 days) 0.103 15.48 10.95 A 

LSD ∝ = 0.5 NS NS 4.00 
    

Table 3.8 Influence of LED treatment on sucrose, glucose and fructose 
concentrations (mg∙g-1 DM) in the shoot tissue of hydroponically grown 
‘Premier’ kale (B. oleracea var. Acephala). a 
  

 
 

 a mean values represent two replications of six plants per block treatment for 
each of the three complete experimental runs. Means with the same uppercase 
letter are not statistically different (𝛼𝛼 =0.05). All LED treatments have an 
intensity of 250±10 μmol∙m−2∙s−1; percentages indicate the contribution of red 
(R) and blue (B) light to total intensity. 
NS = not significant 
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Figure 3.9 The influence of LED treatment on fructose concentrations 
(mg∙g-1 DM) in hydroponic kale shoot tissue.  Means with the same 
uppercase letter are not statistically different (𝛼𝛼 =0.05). 
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Figure 3.10 Bioactivation pathway for 
glucosinolates and products (Keck and 
Finley, 2004). 
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Chapter Four Conclusions 
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4.1 Screening of Microgreen Brassica, Herb, and Lettuce Cultivars over 

Different Environments for Biomass and Nutritional Quality 

Parameters 

 There is an expansive range of herbs, vegetables, and annual species that can be 

grown as microgreens. The genetic diversity of microgreen crops can cause differences 

in crop growth, nutritional content, and yield. Additionally, genotype can influence how 

the different plant species interact and respond to changing environmental conditions. 

Genetic variability within the cultivars that were screened in this study contributed to 

the diverse phytochemical, visual, and physical traits of each microgreen species group 

as well as regulated how each cultivar responded to environmental conditions 

throughout the different seasons.  

Cultivars had diverse mineral accumulation rates and phytonutrient contents 

throughout the four seasons. Germination time and production time was influenced by 

genotype and seasonal environmental conditions. The herb microgreens had the longest 

germination and production times as compared to lettuce and brassica cultivars of 

which the brassica microgreens had the shortest germination and production times. 

Generally, herb microgreens had higher mineral and carotenoid concentrations with 

brassica microgreens having the second highest carotenoid concentrations, while 

lettuce had greater water soluble carbohydrate concentrations. Brassica microgreens 

consistently had the highest FM, while herb microgreens had the lowest throughout all 

seasons.  
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 Environmental factors like light, water, humidity, and temperature varied 

according to season and significantly impacted microgreen growth and development. 

Light quality and temperature played a significant role in shaping plant metabolic 

activity and morphology throughout the different seasons. Temperatures should remain 

as constant as possible throughout the growing period to promote uniform germination 

and growth; especially cooler nighttime temperatures which can trigger secondary 

dormancy or delay germination microgreens. Temperatures between 20-30 °C had the 

greatest impact on promoting microgreen growth, while moderate PAR levels between 

250-400 μmol∙m−2∙s−1 tended to benefit metabolite and biomass accumulation in 

microgreens. Future studies are needed to document the impacts on nutritionally 

important metabolites of seasonal spectral differences in greenhouse produced 

specialty crops.  

 The spring and fall seasons were optimal for general microgreen growth and 

development.  Carotenoid concentrations in all microgreen cultivars tended to increase 

in the summer and fall. Glucose and fructose tended to increase in microgreen shoot 

tissue in the summer and fall, while sucrose increased in the winter and spring. 

Micronutrient concentrations in shoot tissue tended to increase in the winter, while 

macronutrient concentrations had a more diverse accumulation pattern based on 

cultivar and season. Microgreens prefer warmer growing conditions with high humidity 

and moderate PAR levels. With the genetic diversity of commercial microgreen crops, 

future studies are needed to analyze the nutritional content of different microgreen 
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cultivars. Additionally, future studies can investigate the impact of LED treatments on 

different microgreen cultivars in hydroponic, compost+peat based media, and peat-

based media production systems. Since microgreens are a short-cycle crop with the 

potential to secure high market prices, a complete economic analysis of microgreen 

production in greenhouses could benefit producers seeking to grow them commercially.  

4.2 Impact of Duration and Light Quality of Narrow-Band Wavelength 

LEDs on Biomass, Root and Shoot Morphology, and Nutritional Quality 

of Hydroponically Grown Kale 

Light plays a major role in plant growth and development by triggering the up or 

down regulation of internal signaling pathways to alter metabolic and hormone 

pathways to match environmental conditions. Hydroponically grown leafy greens can be 

successfully grown in controlled environments using artificial lighting. The impacts of 

LED lighting on leafy greens have been primarily investigated in lettuce crops, but more 

information is needed on a larger range of specialty leafy greens like kale, collard 

greens, and cabbages. Root development is essential to promoting healthy plant growth 

via efficient water, metabolite, and nutrient translocation to sink tissues. Light can 

influence root development through the partitioning of metabolites between root and 

shoot tissues. Blue LED treatments improved the FM and DM of hydroponic kale roots. 

Hydroponically grown plants offer a more convenient method to study root morphology 

and development. More studies are needed on the impacts of LED lighting on radical 

and root development in specialty greens and transplants.  
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Additionally, light quality, quantity, and duration can alter plant morphology, 

biomass accumulation, along with primary metabolism and secondary metabolite levels 

in shoot tissue of leafy greens. Previous studies have established the use of LED 

treatments to influence primary and secondary metabolite levels in shoot tissue of 

specialty greens. The blue LED treatments increased carbohydrate and chlorophyll 

concentrations, decreased plant height, as well as decreased xanthophyll cycle 

pigments.  In contrast, the red LED treatment increased GS concentrations and plant 

height of hydroponic kale. Blue LED treatments promoted vegetative growth and 

biomass accumulation in root and shoot tissues in hydroponic kale. It also down-

regulated the xanthophyll cycle which protects light harvesting centers from 

photodamage, indicating the blue LED treatments did not place additional stress on 

photosynthesis. Specific wavelengths of red and blue light can impact plant growth and 

development through the modulation of metabolic and hormonal pathways via signals 

from photoreceptor pigments. The results of this study connect the changes in 

metabolic pathways and root and shoot morphology in hydroponic kale greens to 

narrow-band red and blue wavelengths.   

The consistent FM values of hydroponic kale across all LED treatments could 

signify that other factors besides light within the genotype or environment of kale play a 

greater role in controlling biomass accumulation. Contrasting results within this study 

with other specialty green LED studies could be attributed to differences in maturity, 

genotype, cultivar, and cultivation method. Alternating the quality and duration of red 
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and blue narrow band wavelengths can influence the morphology and phytonutrient 

content of hydroponic kale. Future studies are needed to determine the most effective 

developmental stage to apply an LED treatment. For example, a study could investigate 

the influence of a blue LED treatment applied just after germination, as compared to a 

blue LED treatment applied just before harvest. An additional study could look at the 

influence of a sole source blue or red LED pre-harvest treatment on metabolite 

concentrations along with root and shoot morphology for a screening of specialty leafy 

green cultivars.  
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